ferritin_amplify/amplify/
amplify.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
//! AMPLIFY is an optimized transformer model focused on optimizing the context of sequence models
//! while maintaining computational efficiency.
//!
//! Key features:
//! - Rotary positional embeddings
//! - RMSNorm for improved training stability
//! - SwiGLU activation function
//! - Specialized architecture optimizations
//! - Memory efficient inference
//!
//!
use super::config::AMPLIFYConfig;
use super::encoder::EncoderBlock;
use super::outputs::ModelOutput;
use super::rotary::precompute_freqs_cis;
use candle_core::{Device, Module, Result, Tensor, D};
use candle_nn::{embedding, linear, rms_norm, Embedding, Linear, RmsNorm, VarBuilder};
use tokenizers::Tokenizer;

/// The AMPLIFY model
///
/// - [GH PythonModel](https://github.com/chandar-lab/AMPLIFY/blob/rc-0.1/src/amplify/model/amplify.py)
/// - [paper](https://www.biorxiv.org/content/10.1101/2024.09.23.614603v1)
/// - [HF](https://huggingface.co/chandar-lab/AMPLIFY_120M)
///
#[derive(Debug)]
pub struct AMPLIFY {
    encoder: Embedding,
    transformer_encoder: Vec<EncoderBlock>,
    layer_norm_2: RmsNorm,
    decoder: Linear,
    freqs_cis: Tensor,
    config: AMPLIFYConfig,
}

impl AMPLIFY {
    fn process_attention_mask(
        &self,
        pad_mask: Option<&Tensor>,
        num_attention_heads: i64,
    ) -> Result<Option<Tensor>> {
        let Some(mask) = pad_mask else {
            return Ok(None);
        };
        if mask.sum_all()?.to_scalar::<f32>()? == 0.0 {
            return Ok(None);
        }
        let batch_size = mask.dim(0)?;
        let seq_length = mask.dim(D::Minus1)?;
        let num_heads = num_attention_heads as usize;
        let expanded_mask = mask
            .unsqueeze(1)? // Add head dimension
            .unsqueeze(1)? // Add query dimension
            .expand((batch_size, num_heads, seq_length, seq_length))?;
        Ok(Some(expanded_mask))
    }
    pub fn forward(
        &self,
        src: &Tensor,
        pad_mask: Option<&Tensor>,
        output_hidden_states: bool,
        output_attentions: bool,
    ) -> Result<ModelOutput> {
        let mut hidden_states = vec![];
        let mut attentions = vec![];
        let attention_mask =
            self.process_attention_mask(pad_mask, self.transformer_encoder.len() as i64)?;
        let freqs_cis = self.freqs_cis.narrow(0, 0, src.dim(1)?)?;
        let mut x = self.encoder.forward(src)?.contiguous()?;
        for layer in self.transformer_encoder.iter() {
            let (new_x, attn) =
                layer.forward(&x, attention_mask.as_ref(), &freqs_cis, output_attentions)?;
            x = new_x;
            if output_hidden_states {
                hidden_states.push(x.clone());
            }
            if output_attentions {
                if let Some(attn) = attn {
                    attentions.push(attn);
                }
            }
        }
        // Final layer norm and decoder
        let logits = if self.config.layer_norm_before_last_layer {
            self.decoder.forward(&self.layer_norm_2.forward(&x)?)?
        } else {
            self.decoder.forward(&x)?
        };

        Ok(ModelOutput {
            logits,
            hidden_states: if output_hidden_states {
                Some(hidden_states)
            } else {
                None
            },
            attentions: if output_attentions {
                Some(attentions)
            } else {
                None
            },
        })
    }
    pub fn load(vb: VarBuilder, cfg: &AMPLIFYConfig) -> Result<Self> {
        let mut transformer_encoder = Vec::with_capacity(cfg.num_hidden_layers);
        for i in 0..cfg.num_hidden_layers {
            transformer_encoder.push(EncoderBlock::load(
                vb.pp("transformer_encoder"),
                cfg,
                i as i32,
            )?);
        }
        let encoder = embedding(cfg.vocab_size, cfg.hidden_size, vb.pp("encoder"))?;
        let layer_norm_2 = rms_norm(cfg.hidden_size, cfg.norm_eps, vb.pp("layer_norm_2"))?;
        let decoder = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("decoder"))?;
        let head_dim = cfg.hidden_size / cfg.num_attention_heads;
        let freqs_cis = precompute_freqs_cis(head_dim, cfg.max_length)?.to_device(vb.device())?;

        Ok(Self {
            encoder,
            transformer_encoder,
            layer_norm_2,
            decoder,
            freqs_cis,
            config: cfg.clone(),
        })
    }
    pub fn get_device(&self) -> &Device {
        self.freqs_cis.device()
    }
    pub fn load_tokenizer() -> Result<Tokenizer> {
        let tokenizer_bytes = include_bytes!("tokenizer.json");
        Tokenizer::from_bytes(tokenizer_bytes)
            .map_err(|e| candle_core::Error::Msg(format!("Failed to load tokenizer: {}", e)))
    }
}