1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
//! AtomCollection
//!
//! An AtomCollection is primarily a group of atoms with some atomic properties like coordinates, element type
//! and residue information. Additional data like bonds can be added post-instantiation.
//! The data for residues within this collection can be iterated through. Other useful queries like inter-atomic
//! distances are supported.
use super::bonds::{Bond, BondOrder};
use super::info::constants::get_bonds_canonical20;
use crate::residue::{ResidueAtoms, ResidueIter};
use crate::selection::{AtomSelector, AtomView, Selection};
use itertools::{izip, Itertools};
use pdbtbx::Element;
/// Atom Collection
///
/// The core data structure of ferritin-core.
///
/// it strives to be simple, high perfomance, and extensible using
/// traits.
///
pub struct AtomCollection {
size: usize,
coords: Vec<[f32; 3]>,
res_ids: Vec<i32>,
res_names: Vec<String>,
is_hetero: Vec<bool>,
elements: Vec<Element>,
atom_names: Vec<String>,
chain_ids: Vec<String>,
bonds: Option<Vec<Bond>>,
// atom_type: Vec<String>,
// // ... other fixed fields
// dynamic_fields: HashMap<String, Vec<Box<dyn Any>>>,
// // self.add_annotation("chain_id", dtype="U4")
// self.add_annotation("res_id", dtype=int)
// self.add_annotation("ins_code", dtype="U1") <- what is this?
// self.add_annotation("res_name", dtype="U5")
// self.add_annotation("hetero", dtype=bool)
// self.add_annotation("atom_name", dtype="U6")
// self.add_annotation("element", dtype="U2")
}
impl AtomCollection {
pub fn new(
size: usize,
coords: Vec<[f32; 3]>,
res_ids: Vec<i32>,
res_names: Vec<String>,
is_hetero: Vec<bool>,
elements: Vec<Element>,
atom_names: Vec<String>,
chain_ids: Vec<String>,
bonds: Option<Vec<Bond>>,
) -> Self {
AtomCollection {
size,
coords,
res_ids,
res_names,
is_hetero,
elements,
atom_names,
chain_ids,
bonds,
}
}
pub fn calculate_displacement(&self) {
// Measure the displacement vector, i.e. the vector difference, from
// one array of atom coordinates to another array of coordinates.
unimplemented!()
}
pub fn calculate_distance(&self, _atoms: AtomCollection) {
// def distance(atoms1, atoms2, box=None):
// """
// Measure the euclidian distance between atoms.
// Parameters
// ----------
// atoms1, atoms2 : ndarray or Atom or AtomArray or AtomArrayStack
// The atoms to measure the distances between.
// The dimensions may vary.
// Alternatively, a ndarray containing the coordinates can be
// provided.
// Usual *NumPy* broadcasting rules apply.
// box : ndarray, shape=(3,3) or shape=(m,3,3), optional
// If this parameter is set, periodic boundary conditions are
// taken into account (minimum-image convention), based on
// the box vectors given with this parameter.
// The shape *(m,3,3)* is only allowed, when the input coordinates
// comprise multiple models.
// Returns
// -------
// dist : float or ndarray
// The atom distances.
// The shape is equal to the shape of the input `atoms` with the
// highest dimensionality minus the last axis.
// See also
// --------
// index_distance
// """
// diff = displacement(atoms1, atoms2, box)
// return np.sqrt(vector_dot(diff, diff))
unimplemented!()
}
pub fn connect_via_residue_names(&mut self) {
if self.bonds.is_some() {
println!("Bonds already in place. Not overwriting.");
return;
}
let aa_bond_info = get_bonds_canonical20();
let residue_starts = self.get_residue_starts();
// Iterate through residues
let mut bonds = Vec::new();
for res_i in 0..residue_starts.len() - 1 {
let curr_start_i = residue_starts[res_i] as usize;
let next_start_i = residue_starts[res_i + 1] as usize;
if let Some(bond_dict_for_res) =
aa_bond_info.get(&self.res_names[curr_start_i].as_str())
{
// Iterate through bonds in this residue
for &(atom_name1, atom_name2, bond_type) in bond_dict_for_res {
let atom_indices1: Vec<usize> = (curr_start_i..next_start_i)
.filter(|&i| self.atom_names[i] == atom_name1)
.collect();
let atom_indices2: Vec<usize> = (curr_start_i..next_start_i)
.filter(|&i| self.atom_names[i] == atom_name2)
.collect();
// Create all possible bond combinations
for &i in &atom_indices1 {
for &j in &atom_indices2 {
bonds.push(Bond::new(
i as i32,
j as i32,
BondOrder::match_bond(bond_type),
));
}
}
}
}
}
// Update self.bonds
println!("Updating bonds....");
self.bonds = Some(bonds);
}
pub fn connect_via_distance(&self) -> Vec<Bond> {
// note: was intendin to follow Biotite's algo
unimplemented!()
}
pub fn get_size(&self) -> usize {
self.size
}
pub fn get_atom_name(&self, idx: usize) -> &String {
&self.atom_names[idx]
}
pub fn get_bonds(&self) -> Option<&Vec<Bond>> {
self.bonds.as_ref()
}
pub fn get_chain_id(&self, idx: usize) -> &String {
&self.chain_ids[idx]
}
pub fn get_coord(&self, idx: usize) -> &[f32; 3] {
&self.coords[idx]
}
pub fn get_coords(&self) -> &Vec<[f32; 3]> {
self.coords.as_ref()
}
pub fn get_element(&self, idx: usize) -> &Element {
&self.elements[idx]
}
pub fn get_elements(&self) -> &Vec<Element> {
self.elements.as_ref()
}
pub fn get_is_hetero(&self, idx: usize) -> bool {
self.is_hetero[idx]
}
pub fn get_resnames(&self) -> &Vec<String> {
self.res_names.as_ref()
}
pub fn get_res_id(&self, idx: usize) -> &i32 {
&self.res_ids[idx]
}
pub fn get_resids(&self) -> &Vec<i32> {
self.res_ids.as_ref()
}
pub fn get_res_name(&self, idx: usize) -> &String {
&self.res_names[idx]
}
/// A new residue starts, either when the chain ID, residue ID,
/// insertion code or residue name changes from one to the next atom.
pub(crate) fn get_residue_starts(&self) -> Vec<i64> {
let mut starts = vec![0];
starts.extend(
izip!(&self.res_ids, &self.res_names, &self.chain_ids)
.tuple_windows()
.enumerate()
.filter_map(
|(i, ((res_id1, name1, chain1), (res_id2, name2, chain2)))| {
if res_id1 != res_id2 || name1 != name2 || chain1 != chain2 {
Some((i + 1) as i64)
} else {
None
}
},
),
);
starts
}
pub fn iter_coords_and_elements(&self) -> impl Iterator<Item = (&[f32; 3], &Element)> {
izip!(&self.coords, &self.elements)
}
/// Iter_Residues Will Iterate Through the AtomCollection one Residue at a time.
///
/// This is the base for any onther residue filtration code.
pub fn iter_residues_all(&self) -> ResidueIter {
ResidueIter::new(self, self.get_residue_starts())
}
pub fn iter_residues_aminoacid(&self) -> impl Iterator<Item = ResidueAtoms> {
self.iter_residues_all()
.filter(|residue| residue.is_amino_acid())
}
pub fn select(&self) -> AtomSelector {
AtomSelector::new(self)
}
pub fn select_by_chain(&self, chain_id: &str) -> Selection {
let indices: Vec<usize> = self
.chain_ids
.iter()
.enumerate()
.filter(|(_, &ref chain)| chain == chain_id)
.map(|(i, _)| i)
.collect();
Selection::new(indices)
}
pub fn select_by_residue(&self, res_name: &str) -> Selection {
let indices: Vec<usize> = self
.res_names
.iter()
.enumerate()
.filter(|(_, name)| name.as_str() == res_name)
.map(|(i, _)| i)
.collect();
Selection::new(indices)
}
pub fn view(&self, selection: Selection) -> AtomView {
AtomView::new(self, selection)
}
}
#[cfg(test)]
mod tests {
use crate::AtomCollection;
use ferritin_test_data::TestFile;
use pdbtbx::Element;
#[test]
fn test_selection_api() {
let (prot_file, _temp) = TestFile::protein_01().create_temp().unwrap();
let (pdb, _) = pdbtbx::open(prot_file).unwrap();
let ac = AtomCollection::from(&pdb);
let selected_atoms = ac
.select()
.chain("A")
.residue("GLY")
.element(Element::C)
.collect();
assert_eq!(selected_atoms.size(), 22);
// let carbon_coords: Vec<[f32; 3]> = selected_atoms
// .into_iter()
// .filter(|atom| *atom.element == Element::C)
// .map(|atom| *atom.coords)
// .collect();
}
#[test]
fn test_residue_iterator() {
let (prot_file, _temp) = TestFile::protein_01().create_temp().unwrap();
let (pdb, _) = pdbtbx::open(prot_file).unwrap();
let ac = AtomCollection::from(&pdb);
assert_eq!(ac.get_size(), 1413);
// This includes Water Molecules
let max_resid = ac.get_resids().iter().max().unwrap_or(&0);
assert_eq!(*max_resid, 338);
// this fn is only available in-crate
// let residue_breaks = ac.get_residue_starts();
// assert_eq!(residue_breaks, vec![1, 2, 3]);
// This is counting 294 - I expect
// let residue_count = ac.iter_residues().count();
// assert_eq!(residue_count, 154);
//
// Water count -> 139
//
for res in ac.iter_residues_all() {
println!("{:?}", res.res_name)
}
}
}