ferritin_ligandmpnn/ligandmpnn/proteinfeatures.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
//! Protein Featurizer for ProteinMPNN/LignadMPNN
//!
//! Extract protein features for ligandmpnn
//!
//! Returns a set of features calculated from protein structure
//! including:
//! - Residue-level features like amino acid type, secondary structure
//! - Geometric features like distances, angles
//! - Chemical features like hydrophobicity, charge
//! - Evolutionary features from MSA profiles
use super::utilities::{aa1to_int, aa3to1, calculate_cb, AAAtom};
use candle_core::{DType, Device, Result, Tensor};
use ferritin_core::AtomCollection;
use itertools::MultiUnzip;
use pdbtbx::Element;
use std::collections::{HashMap, HashSet};
use strum::IntoEnumIterator;
// Helper Fns --------------------------------------
fn is_heavy_atom(element: &Element) -> bool {
!matches!(element, Element::H | Element::He)
}
/// Convert the AtomCollection into a struct that can be passed to a model.
pub trait LMPNNFeatures {
fn encode_amino_acids(&self, device: &Device) -> Result<Tensor>; // ( residue types )
fn featurize(&self, device: &Device) -> Result<ProteinFeatures>; // need more control over this featurization process
fn get_res_index(&self) -> Vec<u32>;
fn to_numeric_backbone_atoms(&self, device: &Device) -> Result<Tensor>; // [residues, N/CA/C/O, xyz]
fn to_numeric_atom37(&self, device: &Device) -> Result<Tensor>; // [residues, N/CA/C/O....37, xyz]
fn to_numeric_ligand_atoms(&self, device: &Device) -> Result<(Tensor, Tensor, Tensor)>; // ( positions , elements, mask )
fn to_pdb(&self); //
}
/// Methods for Convering an AtomCollection into a LigandMPNN-ready
/// datasets
impl LMPNNFeatures for AtomCollection {
/// Return a 2D tensor of [1, seqlength]
fn encode_amino_acids(&self, device: &Device) -> Result<Tensor> {
let n = self.iter_residues_aminoacid().count();
let s = self
.iter_residues_aminoacid()
.map(|res| res.res_name)
.map(|res| aa3to1(&res))
.map(|res| aa1to_int(res));
Ok(Tensor::from_iter(s, device)?.reshape((1, n))?)
}
// equivalent to protien MPNN's parse_PDB
fn featurize(&self, device: &Device) -> Result<ProteinFeatures> {
todo!();
// let x_37 = self.to_numeric_atom37(device)?;
// let x_37_m = Tensor::zeros((x_37.dim(0)?, x_37.dim(1)?), DType::F64, device)?;
// let (y, y_t, y_m) = self.to_numeric_ligand_atoms(device)?;
// // get CB locations...
// // although we have these already for our full set...
// let cb = calculate_cb(&x_37);
// // chain_labels = np.array(CA_atoms.getChindices(), dtype=np.int32)
// let chain_labels = self.get_resids(); // <-- need to double-check shape. I think this is all-atom
// // R_idx = np.array(CA_resnums, dtype=np.int32)
// // let _r_idx = self.get_resids(); // todo()!
// // amino acid names as int....
// let s = self.encode_amino_acids(device)?;
// // coordinates of the backbone atoms
// let indices = Tensor::from_slice(
// &[0i64, 1i64, 2i64, 4i64], // index of N/CA/C/O as integers
// (4,),
// &device,
// )?;
// let x = x_37.index_select(&indices, 1)?;
// Ok(ProteinFeatures {
// s,
// x,
// x_mask: Some(x_37_m),
// y,
// y_t,
// y_m: Some(y_m),
// r_idx: None,
// chain_labels: None,
// chain_letters: None,
// mask_c: None,
// chain_list: None,
// })
}
/// create numeric Tensor of shape [1, <sequence-length>, 4, 3] where the 4 is N/CA/C/O
fn to_numeric_backbone_atoms(&self, device: &Device) -> Result<Tensor> {
let res_count = self.iter_residues_aminoacid().count();
let mut backbone_data = vec![0f32; res_count * 4 * 3];
for residue in self.iter_residues_aminoacid() {
let resid = residue.res_id as usize;
let backbone_atoms = [
residue.find_atom_by_name("N"),
residue.find_atom_by_name("CA"),
residue.find_atom_by_name("C"),
residue.find_atom_by_name("O"),
];
for (atom_idx, maybe_atom) in backbone_atoms.iter().enumerate() {
if let Some(atom) = maybe_atom {
let [x, y, z] = atom.coords;
let base_idx = (resid * 4 + atom_idx) * 3;
backbone_data[base_idx] = *x;
backbone_data[base_idx + 1] = *y;
backbone_data[base_idx + 2] = *z;
}
}
}
// Create tensor with shape [1,residues, 4, 3]
Tensor::from_vec(backbone_data, (1, res_count, 4, 3), &device)
}
/// create numeric Tensor of shape [<sequence-length>, 37, 3]
fn to_numeric_atom37(&self, device: &Device) -> Result<Tensor> {
let res_count = self.iter_residues_aminoacid().count();
let mut atom37_data = vec![0f32; res_count * 37 * 3];
for (idx, residue) in self.iter_residues_aminoacid().enumerate() {
for atom_type in AAAtom::iter().filter(|&a| a != AAAtom::Unknown) {
if let Some(atom) = residue.find_atom_by_name(&atom_type.to_string()) {
let [x, y, z] = atom.coords;
let base_idx = (idx * 37 + atom_type as usize) * 3;
atom37_data[base_idx] = *x;
atom37_data[base_idx + 1] = *y;
atom37_data[base_idx + 2] = *z;
}
}
}
// Create tensor with shape [residues, 37, 3]
Tensor::from_vec(atom37_data, (1, res_count, 37, 3), &device)
}
// create numeric tensor for ligands.
//
// 1. Filter non-protein and water
// 2. Filter out H, and HE
// 3. convert to 3 tensors:
// y = coords
// y_t = elements
// y_m = mask
fn to_numeric_ligand_atoms(&self, device: &Device) -> Result<(Tensor, Tensor, Tensor)> {
let (coords, elements): (Vec<[f32; 3]>, Vec<Element>) = self
.iter_residues_all()
// keep only the non-protein, non-water residues
.filter(|residue| {
let res_name = &residue.res_name;
!residue.is_amino_acid() && res_name != "HOH" && res_name != "WAT"
})
// keep only the heavy atoms
.flat_map(|residue| {
residue
.iter_atoms()
.filter(|atom| is_heavy_atom(&atom.element))
.map(|atom| (*atom.coords, atom.element.clone()))
.collect::<Vec<_>>()
})
.multiunzip();
// Create coordinates tensor
let y = Tensor::from_slice(&coords.concat(), (coords.len(), 3), device)?;
// Create elements tensor
let y_t = Tensor::from_slice(
&elements
.iter()
.map(|e| e.atomic_number() as f32)
.collect::<Vec<_>>(),
(elements.len(),),
device,
)?;
// Create mask tensor (all ones in this case since we've already filtered)
let y_m = Tensor::ones_like(&y)?;
Ok((y, y_t, y_m))
}
fn to_pdb(&self) {
// Todo: finish this. will require somethign like prody....
// pub fn write_full_pdb(
// save_path: &str,
// x: &Tensor,
// x_m: &Tensor,
// b_factors: &Tensor,
// r_idx: &Tensor,
// chain_letters: &Tensor,
// s: &Tensor,
// other_atoms: Option<&Tensor>,
// icodes: Option<&Tensor>,
// force_hetatm: bool,
// ) -> Result<()> {
// // save_path : path where the PDB will be written to
// // X : protein atom xyz coordinates shape=[length, 14, 3]
// // X_m : protein atom mask shape=[length, 14]
// // b_factors: shape=[length, 14]
// // R_idx: protein residue indices shape=[length]
// // chain_letters: protein chain letters shape=[length]
// // S : protein amino acid sequence shape=[length]
// // other_atoms: other atoms parsed by prody
// // icodes: a list of insertion codes for the PDB; e.g. antibody loops
// // """
// let s_str: Vec<&str> = s
// .iter()
// .map(|&aa| restype_int_to_str(aa))
// .map(restype_1to3)
// .collect();
// let mut x_list = Vec::new();
// let mut b_factor_list = Vec::new();
// let mut atom_name_list = Vec::new();
// let mut element_name_list = Vec::new();
// let mut residue_name_list = Vec::new();
// let mut residue_number_list = Vec::new();
// let mut chain_id_list = Vec::new();
// let mut icodes_list = Vec::new();
// for (i, aa) in s_str.iter().enumerate() {
// let sel = x_m.get(i)?.to_dtype(DType::I32)?.eq(&1)?;
// let total = sel.sum_all()?.to_scalar::<i32>()?;
// let tmp = Tensor::from_slice(&restype_name_to_atom14_names(aa))?.masked_select(&sel)?;
// x_list.push(x.get(i)?.masked_select(&sel)?);
// b_factor_list.push(b_factors.get(i)?.masked_select(&sel)?);
// atom_name_list.push(tmp.clone());
// element_name_list.extend(tmp.iter().map(|&atom| &atom[..1]));
// residue_name_list.extend(std::iter::repeat(aa).take(total as usize));
// residue_number_list.extend(std::iter::repeat(r_idx.get(i)?).take(total as usize));
// chain_id_list.extend(std::iter::repeat(chain_letters.get(i)?).take(total as usize));
// icodes_list.extend(std::iter::repeat(icodes.get(i)?).take(total as usize));
// }
// let x_stack = Tensor::cat(&x_list, 0)?;
// let b_factor_stack = Tensor::cat(&b_factor_list, 0)?;
// let atom_name_stack = Tensor::cat(&atom_name_list, 0)?;
// let mut protein = prody::AtomGroup::new();
// protein.set_coords(&x_stack)?;
// protein.set_betas(&b_factor_stack)?;
// protein.set_names(&atom_name_stack)?;
// protein.set_resnames(&residue_name_list)?;
// protein.set_elements(&element_name_list)?;
// protein.set_occupancies(&Tensor::ones(x_stack.shape()[0])?)?;
// protein.set_resnums(&residue_number_list)?;
// protein.set_chids(&chain_id_list)?;
// protein.set_icodes(&icodes_list)?;
// if let Some(other_atoms) = other_atoms {
// let mut other_atoms_g = prody::AtomGroup::new();
// other_atoms_g.set_coords(&other_atoms.get_coords()?)?;
// other_atoms_g.set_names(&other_atoms.get_names()?)?;
// other_atoms_g.set_resnames(&other_atoms.get_resnames()?)?;
// other_atoms_g.set_elements(&other_atoms.get_elements()?)?;
// other_atoms_g.set_occupancies(&other_atoms.get_occupancies()?)?;
// other_atoms_g.set_resnums(&other_atoms.get_resnums()?)?;
// other_atoms_g.set_chids(&other_atoms.get_chids()?)?;
// if force_hetatm {
// other_atoms_g.set_flags("hetatm", &other_atoms.get_flags("hetatm")?)?;
// }
// prody::write_pdb(save_path, &(protein + other_atoms_g))?;
// } else {
// prody::write_pdb(save_path, &protein)?;
// }
// }
unimplemented!()
}
fn get_res_index(&self) -> Vec<u32> {
self.iter_residues_aminoacid()
.map(|res| res.res_id as u32)
.collect()
}
}
pub struct ProteinFeatures {
/// protein amino acids sequences as 1D Tensor of u32
pub(crate) s: Tensor,
/// protein co-oords by residue [batch, seqlength, 37, 3]
pub(crate) x: Tensor,
/// protein mask by residue
pub(crate) x_mask: Option<Tensor>,
/// ligand coords
pub(crate) y: Tensor,
/// encoded ligand atom names
pub(crate) y_t: Tensor,
/// ligand mask
pub(crate) y_m: Option<Tensor>,
/// R_idx: Tensor dimensions: torch.Size([93]) # protein residue indices shape=[length]
pub(crate) r_idx: Tensor,
/// chain_labels: Tensor dimensions: torch.Size([93]) # protein chain letters shape=[length]
pub(crate) chain_labels: Option<Vec<f64>>,
/// chain_letters: NumPy array dimensions: (93,)
pub(crate) chain_letters: Vec<String>,
/// mask_c: Tensor dimensions: torch.Size([93])
pub(crate) mask_c: Option<Tensor>,
pub(crate) chain_list: Vec<String>,
// CA_icodes: NumPy array dimensions: (93)
// put these here temporarily
// bias_AA: Option<Tensor>,
// bias_AA_per_residue: Option<Tensor>,
// omit_AA_per_residue_multi: Option<Tensor>,
// backbone: String,
// other_atoms: String,
// ca_icodes: Vec<String>,
// water_atoms: String,
// // [[0, 1, 14], [10,11,14,15], [20, 21]]
// pub symmetry_residues: Option<Vec<Vec<i64>>>,
// // [[1.0, 1.0, 1.0], [-2.0,1.1,0.2,1.1], [2.3, 1.1]]
// pub symmetry_weights: Option<Vec<Vec<f64>>>,
// homo_oligomer: Option<bool>,
// pub batch_size: Option<i64>,
}
impl ProteinFeatures {
pub fn get_coords(&self) -> &Tensor {
&self.x
}
pub fn get_sequence(&self) -> &Tensor {
&self.s
}
pub fn get_sequence_mask(&self) -> Option<&Tensor> {
self.x_mask.as_ref()
}
pub fn get_residue_index(&self) -> &Tensor {
&self.r_idx
}
pub fn save_to_safetensor(&self, path: &str) -> Result<()> {
let mut tensors: HashMap<String, Tensor> = HashMap::new();
// this is only one field. need to do the rest of the fields
tensors.insert("protein_atom_sequence".to_string(), self.s.clone());
tensors.insert("protein_atom_positions".to_string(), self.x.clone());
tensors.insert("ligand_atom_positions".to_string(), self.y.clone());
tensors.insert("ligand_atom_name".to_string(), self.y_t.clone());
candle_core::safetensors::save(&tensors, path)?;
Ok(())
}
pub fn get_encoded(
&self,
) -> Result<(Vec<String>, HashMap<String, usize>, HashMap<usize, String>)> {
// Creates a set of mappings from
let r_idx_list = &self.r_idx.flatten_all()?.to_vec1::<u32>()?;
let chain_letters_list = &self.chain_letters;
let encoded_residues: Vec<String> = r_idx_list
.iter()
.enumerate()
.map(|(i, r_idx)| format!("{}{}", chain_letters_list[i], r_idx))
.collect();
let encoded_residue_dict: HashMap<String, usize> = encoded_residues
.iter()
.enumerate()
.map(|(i, s)| (s.clone(), i))
.collect();
let encoded_residue_dict_rev: HashMap<usize, String> = encoded_residues
.iter()
.enumerate()
.map(|(i, s)| (i, s.clone()))
.collect();
Ok((
encoded_residues,
encoded_residue_dict,
encoded_residue_dict_rev,
))
}
// Fixed Residue List --> Tensor of 1/0
// Inputs: `"C1 C2 C3 C4 C5 C6 C7 C8 C9 C10`
pub fn get_encoded_tensor(&self, fixed_residues: String, device: &Device) -> Result<Tensor> {
let res_set: HashSet<String> = fixed_residues.split(' ').map(String::from).collect();
let (encoded_res, _, _) = &self.get_encoded()?;
candle_core::Tensor::from_iter(
encoded_res
.iter()
.map(|item| u32::from(!res_set.contains(item))),
device,
)
}
pub fn get_chain_mask_tensor(
&self,
chains_to_design: Vec<String>,
device: &Device,
) -> Result<Tensor> {
let mask_values: Vec<u32> = self
.chain_letters
.iter()
.map(|chain| u32::from(chains_to_design.contains(chain)))
.collect();
Tensor::from_iter(mask_values, device)
}
pub fn update_mask(&mut self, tensor: Tensor) -> Result<()> {
if let Some(ref mask) = self.x_mask {
self.x_mask = Some(mask.mul(&tensor)?);
} else {
self.x_mask = Some(tensor);
}
Ok(())
}
// Fixed Residue List --> Tensor of length 21
// Inputs: `A:10.0"`
pub fn create_bias_tensor(&self, bias_aa: Option<String>) -> Result<Tensor> {
let device = self.s.device();
let dtype = self.s.dtype();
match bias_aa {
None => Tensor::zeros((21), dtype, device),
Some(bias_aa) => {
let mut bias_values = vec![0.0f32; 21];
for pair in bias_aa.split(',') {
if let Some((aa, value_str)) = pair.split_once(':') {
if let Ok(value) = value_str.parse::<f32>() {
// Get first char from aa str and convert u32 to usize for indexing
if let Some(aa_char) = aa.chars().next() {
let idx = aa1to_int(aa_char) as usize;
bias_values[idx] = value;
}
}
}
}
Tensor::from_slice(&bias_values, (21), device)
}
}
}
}