ferritin_plms/esm/layers/blocks.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
use super::attention::MultiHeadAttention;
use super::geom_attention::GeometricReasoningOriginalImpl;
use crate::esm::models::esmc::{ESMCConfig, Ffn_Type};
// use crate::esm::utils::structure::affine3d::Affine3D;
use candle_core::{Module, Result, Tensor, D};
use candle_nn::{self as nn, VarBuilder};
pub struct SwiGLU {
layer_norm: nn::LayerNorm,
linear1: nn::Linear,
linear2: nn::Linear,
}
impl SwiGLU {
fn swiglu_correction_fn(expansion_ratio: f64, d_model: usize) -> usize {
// set hidden dimension to nearest multiple of 256 after expansion ratio
((expansion_ratio * d_model as f64 + 255.0) / 256.0).floor() as usize * 256
}
pub fn load(vb: VarBuilder, config: &ESMCConfig) -> Result<Self> {
let ESMCConfig {
d_model,
expansion_ratio,
..
} = config;
let hidden_dim = Self::swiglu_correction_fn(*expansion_ratio, *d_model);
Ok(Self {
layer_norm: nn::layer_norm(*d_model, 1e-5, vb.pp("0"))?,
linear1: nn::linear_no_bias(*d_model, hidden_dim * 2, vb.pp("1"))?,
linear2: nn::linear_no_bias(hidden_dim, *d_model, vb.pp("3"))?,
})
}
}
impl Module for SwiGLU {
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let x = self.layer_norm.forward(x)?;
let x = self.linear1.forward(&x)?;
let chunks = x.chunk(2, D::Minus1)?;
let x1 = &chunks[0];
let x2 = &chunks[1];
let x = x1.silu()? * x2;
self.linear2.forward(&x?)
}
}
pub struct UnifiedTransformerBlock {
use_plain_attn: bool,
attn: Option<MultiHeadAttention>,
use_geom_attn: bool,
geom_attn: Option<GeometricReasoningOriginalImpl>,
ffn: SwiGLU,
scaling_factor: f64,
}
impl UnifiedTransformerBlock {
/// Creates a new UnifiedTransformerBlock.
///
/// # Parameters
/// - d_model: The dimensionality of the input and output features
/// - n_heads: The number of attention heads
/// - use_geom_attn: Whether to use geometric attention
/// - use_plain_attn: Whether to use plain attention
/// - v_heads: Number of heads for geometric attention
// pub fn new(
// d_model: i64,
// n_heads: i64,
// use_geom_attn: bool,
// use_plain_attn: bool,
// v_heads: Option<i64>,
// bias: bool,
// expansion_ratio: f64,
// residue_scaling_factor: f64,
// mask_and_zero_frameless: bool,
// qk_layernorm: bool,
// ffn_type: &str,
// ) -> Result<Self> {
// let attn = if use_plain_attn {
// Some(MultiHeadAttention::new(
// d_model,
// n_heads,
// bias,
// qk_layernorm,
// )?)
// } else {
// None
// };
// let geom_attn = if use_geom_attn {
// match v_heads {
// Some(vh) => Some(GeometricReasoningOriginalImpl::new(
// d_model,
// vh,
// bias,
// mask_and_zero_frameless,
// )?),
// None => {
// return Err(candle_core::Error::Msg(
// "v_heads must be specified when use_geom_attn is True".into(),
// ))
// }
// }
// } else {
// None
// };
// let ffn = match ffn_type {
// "swiglu" => swiglu_ln_ffn(d_model, expansion_ratio, bias)?,
// "gelu" => gelu_ln_ffn(d_model, expansion_ratio, bias)?,
// _ => {
// return Err(candle_core::Error::Msg(format!(
// "Unknown ffn_type: {}",
// ffn_type
// )))
// }
// };
// Ok(Self {
// use_plain_attn,
// attn,
// use_geom_attn,
// geom_attn,
// ffn,
// scaling_factor: residue_scaling_factor,
// })
// }
pub fn load(vb: VarBuilder, config: &ESMCConfig, layer: usize) -> Result<Self> {
let ESMCConfig {
ffn_type,
v_head_transformer,
use_plain_attn,
n_layers_geom,
residue_scaling_factor,
..
} = config;
let attn = match use_plain_attn {
false => None,
true => Some(MultiHeadAttention::load(vb.pp("attn"), config)?),
};
// println!("LAYER; GEOM: {}, {}", layer, n_layers_geom);
let use_geom_attn: bool = layer < *n_layers_geom;
// println!("Geom ATTN {}", use_geom_attn);
// let geom_attn = match use_geom_attn {
// false => None,
// true => Some(GeometricReasoningOriginalImpl::load(
// vb.pp("geometric"),
// config,
// )?),
// };
let geom_attn = None;
let ffn = match ffn_type {
Ffn_Type::SWIGLU => SwiGLU::load(vb.pp("ffn"), config)?,
_ => unimplemented!(), // Ffn_Type::GLU => unimplemented!(),
};
Ok(Self {
use_plain_attn: *use_plain_attn,
attn,
use_geom_attn,
geom_attn,
ffn,
scaling_factor: *residue_scaling_factor,
})
}
}
// impl Module for UnifiedTransformerBlock {
// fn forward(&self, x: &Tensor) -> Result<Tensor> {
// let mut x = x.clone();
// if self.use_plain_attn {
// if let Some(attn) = &self.attn {
// let r1 = attn.forward(&x)?;
// x = &x + &(&r1 / self.scaling_factor)?;
// }
// }
// if self.use_geom_attn {
// if let Some(geom_attn) = &self.geom_attn {
// let r2 = geom_attn.forward(&x)?;
// x = &x + &(&r2 / self.scaling_factor)?;
// }
// }
// let r3 = self.ffn.forward(&x)?;
// let r3 = &r3 / self.scaling_factor;
// Ok(&x + &r3)
// }
// }