ferritin_plms/esm/layers/
rotary.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
use crate::esm::models::esmc::ESMCConfig;
use candle_core::{Device, Result, Tensor};
use candle_nn::VarBuilder;

// NOTE: This implementation is based on LLaMA 2's rotary embeddings
// fn rotate_half(x: &Tensor, interleaved: bool) -> Result<Tensor> {
//     if !interleaved {
//         let (x1, x2) = x.chunk(2, -1)?;
//         let neg_x2 = x2.neg();
//         Tensor::cat(&[&neg_x2, &x1], -1)
//     } else {
//         let x1 = x.index_select_along_dim(x.ndim() - 1, 0, 2)?;
//         let x2 = x.index_select_along_dim(x.ndim() - 1, 1, 2)?;
//         let neg_x2 = x2.neg();
//         let stacked = Tensor::stack(&[&neg_x2, &x1], -1)?;
//         stacked.flatten_from(-2)
//     }
// }

// fn apply_rotary_emb(x: &Tensor, cos: &Tensor, sin: &Tensor, interleaved: bool) -> Result<Tensor> {
//     let ro_dim = cos.dim(1)? * 2;
//     let (d1, d2, d3, d4) = x.dims4()?;
//     assert!(ro_dim <= d4);

//     let seqlen = d2;
//     let cos = cos.narrow(0, 0, seqlen)?;
//     let sin = sin.narrow(0, 0, seqlen)?;

//     let cos = cos.unsqueeze(1)?.repeat((1, 1, 2))?;
//     let sin = sin.unsqueeze(1)?.repeat((1, 1, 2))?;

//     let x_rot = x.narrow(-1, 0, ro_dim)?;
//     let x_pass = x.narrow(-1, ro_dim, d4 - ro_dim)?;

//     let x_rotated = rotate_half(&x_rot, interleaved)?;
//     let x_rot_out = (x_rot * &cos)? + (x_rotated * &sin)?;

//     Tensor::cat(&[&x_rot_out, &x_pass], -1)
// }

pub struct RotaryEmbedding {
    dim: usize,
    base: f64,
    interleaved: bool,
    // scale_base: Option<f64>,
    scaling_factor: f64,
    seq_len_cached: usize,
    cos_cached: Option<Tensor>,
    sin_cached: Option<Tensor>,
    cos_k_cached: Option<Tensor>,
    sin_k_cached: Option<Tensor>,
    inv_freq: Tensor,
    scale: Option<Tensor>,
}

impl RotaryEmbedding {
    // pub fn new(
    //     dim: usize,
    //     device: &Device,
    //     base: f64,
    //     interleaved: bool,
    //     scale_base: Option<f64>,
    //     scaling_factor: f64,
    // ) -> Result<Self> {
    //     // self,
    //     // dim: int,
    //     // base=10000.0,
    //     // interleaved=False,
    //     // scale_base=None,
    //     // scaling_factor=1.0,
    //     // pos_idx_in_fp32=True,
    //     // device=None,

    //     let inv_freq = Self::compute_inv_freq(dim, base, device)?;

    //     let scale = if let Some(scale_base) = scale_base {
    //         let arange = Tensor::arange(0., dim as f64, 2., device)?;
    //         let scale = (arange + 0.4 * dim as f64) / (1.4 * dim as f64);
    //         Some(scale)
    //     } else {
    //         None
    //     };

    //     Ok(Self {
    //         dim,
    //         base,
    //         interleaved,
    //         scale_base,
    //         scaling_factor,
    //         seq_len_cached: 0,
    //         cos_cached: None,
    //         sin_cached: None,
    //         cos_k_cached: None,
    //         sin_k_cached: None,
    //         inv_freq,
    //         scale,
    //     })
    // }
    pub fn load(vb: VarBuilder, config: &ESMCConfig) -> Result<Self> {
        let ESMCConfig {
            d_model, n_heads, ..
        } = config;

        let rotary_dims = d_model / n_heads;
        let base = 10000.0;
        let device = vb.device();
        let interleaved = false;
        let scaling_factor = 1.0;
        // scale_base=None,
        // scaling_factor=1.0,
        // pos_idx_in_fp32=True,

        let inv_freq = Self::compute_inv_freq(rotary_dims, base, device)?;
        let arange = Tensor::arange(0., (rotary_dims as f64) / 2., device)? * 2.;
        let scale = {
            let numerator = (&arange? + (0.4 * rotary_dims as f64))?;
            let denominator = 1.4 * rotary_dims as f64;
            numerator / denominator
        };

        Ok(Self {
            dim: rotary_dims,
            base,
            interleaved,
            // scale_base,
            scaling_factor,
            seq_len_cached: 0,
            cos_cached: None,
            sin_cached: None,
            cos_k_cached: None,
            sin_k_cached: None,
            inv_freq,
            scale: Some(scale?),
        })
    }

    fn compute_inv_freq(rotary_dims: usize, base: f64, device: &Device) -> Result<Tensor> {
        Tensor::from_iter(
            (0..rotary_dims)
                .step_by(2)
                .map(|i| i as f32 / rotary_dims as f32)
                .map(|theta| base.powf(-theta as f64)),
            device,
        )
    }

    // fn update_cos_sin_cache(&mut self, seqlen: usize) -> Result<()> {
    //     if seqlen > self.seq_len_cached || self.cos_cached.is_none() {
    //         self.seq_len_cached = seqlen;

    //         let t = (Tensor::arange(0., seqlen as f64, 1., self.inv_freq.device())?)
    //             / self.scaling_factor;
    //         let freqs = t.outer(&self.inv_freq)?;

    //         if self.scale.is_none() {
    //             self.cos_cached = Some(freqs.cos()?);
    //             self.sin_cached = Some(freqs.sin()?);
    //         } else {
    //             let scale = self.scale.as_ref().unwrap();
    //             let power = ((Tensor::arange(0., seqlen as f64, 1., scale.device())?
    //                 - (seqlen / 2) as f64)
    //                 / self.scale_base.unwrap())?;
    //             let scale = scale.pow(&power.unsqueeze(-1)?)?;

    //             let cos = freqs.cos()?;
    //             let sin = freqs.sin()?;

    //             self.cos_cached = Some((&cos * &scale)?);
    //             self.sin_cached = Some((&sin * &scale)?);
    //             self.cos_k_cached = Some((&cos / &scale)?);
    //             self.sin_k_cached = Some((&sin / &scale)?);
    //         }
    //     }
    //     Ok(())
    // }

    // pub fn forward(
    //     &mut self,
    //     q: &Tensor,
    //     k: &Tensor,
    //     seqlen_offset: usize,
    // ) -> Result<(Tensor, Tensor)> {
    //     let seqlen = q.dim(1)? + seqlen_offset;
    //     self.update_cos_sin_cache(seqlen)?;

    //     if self.scale.is_none() {
    //         let cos = self
    //             .cos_cached
    //             .as_ref()
    //             .unwrap()
    //             .narrow(0, seqlen_offset, q.dim(1)?)?;
    //         let sin = self
    //             .sin_cached
    //             .as_ref()
    //             .unwrap()
    //             .narrow(0, seqlen_offset, q.dim(1)?)?;

    //         let q_out = apply_rotary_emb(q, &cos, &sin, self.interleaved)?;
    //         let k_out = apply_rotary_emb(k, &cos, &sin, self.interleaved)?;

    //         Ok((q_out, k_out))
    //     } else {
    //         panic!("Scaled rotary embeddings not implemented");
    //     }
    // }
}