ferritin_plms/esm/models/
esmc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
use crate::esm::layers::regression_head::RegressionHead;
use crate::esm::layers::transformer_stack::TransformerStack;
// use crate::esm::pretrained::load_local_model;
// use crate::esm::sdk::api::ESMProtein;
// use crate::esm::sdk::api::ESMProteinTensor;
// use crate::esm::sdk::api::ForwardTrackData;
// use crate::esm::sdk::api::LogitsConfig;
// use crate::esm::sdk::api::LogitsOutput;
use crate::esm::tokenization::sequence_tokenizer::EsmSequenceTokenizer;
use crate::esm::tokenization::TokenizerCollection;
use candle_core::{Result, Tensor};
use candle_nn::{self as nn, VarBuilder};
// use crate::esm::utils::decoding::decode_sequence;
// use crate::esm::utils::encoding::tokenize_sequence;
// use crate::esm::utils::sampling::BatchedESMProteinTensor;

#[derive(Debug)]
struct ESMCOutput {
    sequence_logits: Tensor,
    embeddings: Option<Tensor>,
}

#[derive(Clone, Copy)]
pub enum ESMTokenizer {
    Esm3OpenSmall,
}
impl ESMTokenizer {
    pub fn get_model_tokenizers(&self) -> TokenizerCollection {
        match self {
            ESMTokenizer::Esm3OpenSmall => {
                let esm_tokenizer = EsmSequenceTokenizer::default();
                TokenizerCollection {
                    sequence: esm_tokenizer,
                }
            }
        }
    }
}

#[derive(Clone, Copy)]
pub enum Ffn_Type {
    SWIGLU,
    GLU,
}

#[derive(Clone)]
pub struct ESMCConfig {
    pub d_model: usize,
    pub n_heads: usize,
    pub n_layers: usize,
    pub v_head_transformer: Option<usize>,
    pub ffn_type: Ffn_Type,
    pub tokenizer: ESMTokenizer,
    // oringal above.
    pub use_plain_attn: bool,
    pub n_layers_geom: usize,
    pub scale_residue: bool,
    pub residue_scaling_factor: f64,
    pub mask_and_zero_frameless: bool,
    pub bias: bool,
    pub qk_layernorm: bool,
    pub expansion_ratio: f64,
    // reg
    pub regression_head_output_dim: usize,
    pub regression_head_hidden_dim: usize,
    pub embedding_dim: usize,
}

impl ESMCConfig {
    pub fn esmc_300m() -> Self {
        //
        //    residue_scaling_factor=  if scale_residue {
        //         (n_layers as f64 / 36.0).sqrt()
        //     } else {
        //         1.0
        //     },

        Self {
            d_model: 960,
            n_heads: 15,
            n_layers: 30,
            v_head_transformer: None,
            ffn_type: Ffn_Type::SWIGLU,
            tokenizer: ESMTokenizer::Esm3OpenSmall,
            use_plain_attn: true,
            n_layers_geom: 1,
            scale_residue: true,
            residue_scaling_factor: (30f64 / 36.).sqrt(),
            mask_and_zero_frameless: false,
            bias: false,
            qk_layernorm: true,
            expansion_ratio: 8.0 / 3.0,
            regression_head_output_dim: 64,
            regression_head_hidden_dim: 960, // d_model
            embedding_dim: 64,
        }
    }
}

pub struct ESMC {
    embed: candle_nn::Embedding,
    transformer: TransformerStack,
    sequence_head: RegressionHead,
    tokenizer: EsmSequenceTokenizer,
}

impl ESMC {
    // pub fn new(
    //     d_model: usize,
    //     n_heads: usize,
    //     n_layers: usize,
    //     tokenizer: EsmSequenceTokenizer,
    // ) -> Self {
    //     Self {
    //         embed: nn::embedding(64, d_model, Default::default())?,
    //         transformer: TransformerStack::new(d_model, n_heads, None, n_layers, 0)?,
    //         sequence_head: RegressionHead::new(d_model, 64)?,
    //         tokenizer,
    //     }
    // }

    pub fn load(vb: VarBuilder, config: ESMCConfig) -> Result<Self> {
        let ESMCConfig {
            d_model,
            tokenizer,
            embedding_dim,
            ..
        } = config;

        let tokenizer_collection = tokenizer.get_model_tokenizers();

        Ok(Self {
            embed: nn::embedding(embedding_dim, d_model, vb.pp("embed"))?,
            transformer: TransformerStack::load(vb.pp("transformer"), &config)?,
            sequence_head: RegressionHead::load(vb.pp("sequence_head"), &config)?,
            tokenizer: tokenizer_collection.sequence,
        })
    }

    // pub fn from_pretrained(model_name: impl Into<String>, device: Option<Device>) -> Result<Self> {
    //     let device = device.unwrap_or(Device::cuda_if_available()?);
    //     let model = load_local_model(&model_name.into(), &device)?;
    //     if device.is_cuda() {
    //         model.to_dtype(DType::BF16)?;
    //     }
    //     Ok(model)
    // }

    // pub fn forward(
    //     &self,
    //     sequence_tokens: Option<&Tensor>,
    //     sequence_id: Option<&Tensor>,
    // ) -> Result<ESMCOutput> {
    //     let sequence_id = sequence_id
    //         .unwrap_or({ &(sequence_tokens.unwrap().eq(self.tokenizer.pad_token_id)?)? });

    //     let x = self.embed.forward(sequence_tokens.unwrap())?;
    //     let (x, _) = self.transformer.forward(&x, Some(sequence_id))?;
    //     let sequence_logits = self.sequence_head.forward(&x)?;

    //     Ok(ESMCOutput {
    //         sequence_logits,
    //         embeddings: Some(x),
    //     })
    // }

    // pub fn encode(&self, input: &ESMProtein) -> Result<ESMProteinTensor> {
    //     let sequence_tokens = if let Some(seq) = &input.sequence {
    //         Some(tokenize_sequence(seq, &self.tokenizer, true)?)
    //     } else {
    //         None
    //     };

    //     Ok(ESMProteinTensor::new(sequence_tokens)?.to_device(&self.device())?)
    // }

    // pub fn decode(&self, input: &ESMProteinTensor) -> Result<ESMProtein> {
    //     let sequence = input.sequence.as_ref().ok_or("Missing sequence")?;
    //     let sequence = decode_sequence(&sequence.slice(1..-1)?, &self.tokenizer)?;
    //     Ok(ESMProtein::new(Some(sequence)))
    // }

    // pub fn logits(&self, input: &ESMProteinTensor, config: &LogitsConfig) -> Result<LogitsOutput> {
    //     let input = if !input.is_batched() {
    //         BatchedESMProteinTensor::from_protein_tensor(input)?
    //     } else {
    //         input.clone()
    //     };

    //     candle_core::no_grad(|| {
    //         let output = self.forward(Some(&input.sequence), None)?;

    //         Ok(LogitsOutput {
    //             logits: ForwardTrackData {
    //                 sequence: if config.sequence {
    //                     Some(output.sequence_logits)
    //                 } else {
    //                     None
    //                 },
    //             },
    //             embeddings: if config.return_embeddings {
    //                 output.embeddings
    //             } else {
    //                 None
    //             },
    //         })
    //     })
    // }
}