ferritin_plms/ligandmpnn/
model.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
//! A message passing protein design neural network
//! that samples sequences diffusing conditional probabilities.
//!
//! - See the [LigandMPNN Repo](https://github.com/dauparas/LigandMPNN)
//!
use std::collections::HashMap;

use super::configs::{ModelTypes, ProteinMPNNConfig};
use super::proteinfeatures::ProteinFeatures;
use super::proteinfeaturesmodel::ProteinFeaturesModel;
use super::utilities::{cat_neighbors_nodes, gather_nodes, int_to_aa1};
use candle_core::safetensors;
use candle_core::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::encoding::one_hot;
use candle_nn::ops::{log_softmax, softmax};
use candle_nn::{embedding, layer_norm, linear, Dropout, Embedding, LayerNorm, Linear, VarBuilder};
use candle_transformers::generation::LogitsProcessor;

// refactoring common fn
fn concat_node_tensors(h_v: &Tensor, h_e: &Tensor, e_idx: &Tensor) -> Result<Tensor> {
    let h_ev = cat_neighbors_nodes(&h_v, h_e, e_idx)?;
    let h_v_expand = h_v.unsqueeze(D::Minus2)?;
    let expand_shape = [
        h_ev.dims()[0],
        h_ev.dims()[1],
        h_ev.dims()[2],
        h_v_expand.dims()[3],
    ];
    let h_v_expand = h_v_expand.expand(&expand_shape)?.to_dtype(h_ev.dtype())?;
    Tensor::cat(&[&h_v_expand, &h_ev], D::Minus1)?.contiguous()
}
// refactoring common fn
fn apply_dropout_and_norm(
    input: &Tensor,
    delta: &Tensor,
    dropout: &Dropout,
    norm: &LayerNorm,
    training: bool,
) -> Result<Tensor> {
    let delta_dropout = dropout.forward(delta, training)?;
    norm.forward(&(input + delta_dropout)?)
}

pub fn multinomial_sample(probs: &Tensor, temperature: f64, seed: u64) -> Result<Tensor> {
    let mut logits_processor = LogitsProcessor::new(
        seed,              // seed for reproducibility
        Some(temperature), // temperature scaling
        // None,              // top_p (nucleus sampling), we don't need this
        Some(0.95), // top_p (nucleus sampling), we don't need this
    );
    let idx = logits_processor.sample(probs)?;
    // println!("Selected index: {}", idx);
    if idx >= 21 {
        println!("WARNING: Invalid index {} selected", idx);
    }
    Tensor::new(&[idx], probs.device())
}

// Primary Return Object from the ProtMPNN Model
#[derive(Clone, Debug)]
pub struct ScoreOutput {
    // Sequence
    pub(crate) s: Tensor,
    pub(crate) log_probs: Tensor,
    pub(crate) logits: Tensor,
    pub(crate) decoding_order: Tensor,
}
impl ScoreOutput {
    // S dims are [Batch, seqlength]
    pub fn get_sequences(&self) -> Result<Vec<String>> {
        let (b, l) = self.s.dims2()?;
        let mut sequences = Vec::with_capacity(b);
        for batch_idx in 0..b {
            let mut sequence = String::with_capacity(l);
            for pos in 0..l {
                let aa_idx = self.s.get(batch_idx)?.get(pos)?.to_vec0::<u32>()?;
                // println!("Position {}, Raw index: {}", pos, aa_idx);
                let aa = int_to_aa1(aa_idx);
                // println!("Converted to: {}", aa);
                sequence.push(aa);
            }
            sequences.push(sequence);
        }
        Ok(sequences)
    }
    pub fn get_decoding_order(&self) -> Result<Vec<u32>> {
        let values = self.decoding_order.flatten_all()?.to_vec1::<u32>()?;
        Ok(values)
    }
    pub fn get_log_probs(&self) -> &Tensor {
        &self.log_probs
    }
    pub fn save_as_safetensors(&self, filename: String) -> Result<()> {
        let mut tensors = HashMap::new();
        tensors.insert("S".to_string(), self.s.clone());
        tensors.insert("log_probs".to_string(), self.log_probs.clone());
        tensors.insert("logits".to_string(), self.logits.clone());
        tensors.insert("decoding_order".to_string(), self.decoding_order.clone());

        // Create directory if it doesn't exist
        if let Some(parent) = std::path::Path::new(&filename).parent() {
            std::fs::create_dir_all(parent)?;
        }

        safetensors::save(&tensors, &filename);
        Ok(())
    }
}

#[derive(Clone, Debug)]
struct PositionWiseFeedForward {
    w1: Linear,
    w2: Linear,
}

impl PositionWiseFeedForward {
    fn new(vb: VarBuilder, dim_input: usize, dim_feedforward: usize) -> Result<Self> {
        let w1 = linear::linear(dim_input, dim_feedforward, vb.pp("W_in"))?;
        let w2 = linear::linear(dim_feedforward, dim_input, vb.pp("W_out"))?;
        Ok(Self { w1, w2 })
    }
}

impl Module for PositionWiseFeedForward {
    fn forward(&self, x: &Tensor) -> Result<Tensor> {
        let x = self.w1.forward(x)?;
        let x = x.gelu()?;
        self.w2.forward(&x)
    }
}

#[derive(Clone, Debug)]
pub struct EncLayer {
    num_hidden: usize,
    num_in: usize,
    scale: f64,
    dropout1: Dropout,
    dropout2: Dropout,
    dropout3: Dropout,
    norm1: LayerNorm,
    norm2: LayerNorm,
    norm3: LayerNorm,
    w1: Linear,
    w2: Linear,
    w3: Linear,
    w11: Linear,
    w12: Linear,
    w13: Linear,
    dense: PositionWiseFeedForward,
}

impl EncLayer {
    pub fn load(vb: VarBuilder, config: &ProteinMPNNConfig, layer: i32) -> Result<Self> {
        let vb = vb.pp(layer); // handle the layer number here.
        let num_hidden = config.hidden_dim as usize;
        let augment_eps = config.augment_eps as f64;
        let num_in = (config.hidden_dim * 2) as usize;
        let dropout_ratio = config.dropout_ratio;
        let norm1 = layer_norm::layer_norm(num_hidden, augment_eps, vb.pp("norm1"))?;
        let norm2 = layer_norm::layer_norm(num_hidden, augment_eps, vb.pp("norm2"))?;
        let norm3 = layer_norm::layer_norm(num_hidden, augment_eps, vb.pp("norm3"))?;

        let w1 = linear::linear(num_hidden + num_in, num_hidden, vb.pp("W1"))?;
        let w2 = linear::linear(num_hidden, num_hidden, vb.pp("W2"))?;
        let w3 = linear::linear(num_hidden, num_hidden, vb.pp("W3"))?;
        let w11 = linear::linear(num_hidden + num_in, num_hidden, vb.pp("W11"))?;
        let w12 = linear::linear(num_hidden, num_hidden, vb.pp("W12"))?;
        let w13 = linear::linear(num_hidden, num_hidden, vb.pp("W13"))?;

        let dropout1 = Dropout::new(dropout_ratio);
        let dropout2 = Dropout::new(dropout_ratio);
        let dropout3 = Dropout::new(dropout_ratio);

        // note in the pytorch code they add the GELU activation here.
        let dense = PositionWiseFeedForward::new(vb.pp("dense"), num_hidden, num_hidden * 4)?;

        Ok(Self {
            num_hidden,
            num_in,
            scale: config.scale_factor,
            dropout1,
            dropout2,
            dropout3,
            norm1,
            norm2,
            norm3,
            w1,
            w2,
            w3,
            w11,
            w12,
            w13,
            dense,
        })
    }
    fn forward(
        &self,
        h_v: &Tensor,
        h_e: &Tensor,
        e_idx: &Tensor,
        mask_v: Option<&Tensor>,
        mask_attend: Option<&Tensor>,
        training: Option<bool>,
    ) -> Result<(Tensor, Tensor)> {
        let training = training.unwrap_or(false);
        let h_v = h_v.to_dtype(DType::F32)?;
        let h_ev = concat_node_tensors(&h_v, h_e, e_idx)?;
        let h_message = self
            .w1
            .forward(&h_ev)?
            .gelu()?
            .apply(&self.w2)?
            .gelu()?
            .apply(&self.w3)?;

        let h_message = if let Some(mask) = mask_attend {
            mask.unsqueeze(D::Minus1)?.broadcast_mul(&h_message)?
        } else {
            h_message
        };
        // Safe division with scale
        let sum = h_message.sum(D::Minus2)?;
        let scale = if self.scale == 0.0 { 1.0 } else { self.scale };
        let dh = (sum / scale)?;
        let h_v = apply_dropout_and_norm(&h_v, &dh, &self.dropout1, &self.norm1, training)?;
        let dense_output = self.dense.forward(&h_v)?;
        let h_v =
            apply_dropout_and_norm(&h_v, &dense_output, &self.dropout2, &self.norm2, training)?;
        let h_v = if let Some(mask) = mask_v {
            mask.unsqueeze(D::Minus1)?.broadcast_mul(&h_v)?
        } else {
            h_v
        };

        let h_ev = concat_node_tensors(&h_v, h_e, e_idx)?;
        let h_message = self
            .w11
            .forward(&h_ev)?
            .gelu()?
            .apply(&self.w12)?
            .gelu()?
            .apply(&self.w13)?;
        let h_e = apply_dropout_and_norm(h_e, &h_message, &self.dropout3, &self.norm3, training)?;
        Ok((h_v, h_e))
    }
}

#[derive(Clone, Debug)]
pub struct DecLayer {
    num_hidden: usize,
    num_in: usize,
    scale: f64,
    dropout1: Dropout,
    dropout2: Dropout,
    norm1: LayerNorm,
    norm2: LayerNorm,
    w1: Linear,
    w2: Linear,
    w3: Linear,
    dense: PositionWiseFeedForward,
}

impl DecLayer {
    pub fn load(vb: VarBuilder, config: &ProteinMPNNConfig, layer: i32) -> Result<Self> {
        let vb = vb.pp(layer); // handle the layer number here.
        let num_hidden = config.hidden_dim as usize;
        let augment_eps = config.augment_eps as f64;
        let num_in = (config.hidden_dim * 3) as usize;
        let dropout_ratio = config.dropout_ratio;

        let norm1 = layer_norm::layer_norm(num_hidden, augment_eps, vb.pp("norm1"))?;
        let norm2 = layer_norm::layer_norm(num_hidden, augment_eps, vb.pp("norm2"))?;

        let w1 = linear::linear(num_hidden + num_in, num_hidden, vb.pp("W1"))?;
        let w2 = linear::linear(num_hidden, num_hidden, vb.pp("W2"))?;
        let w3 = linear::linear(num_hidden, num_hidden, vb.pp("W3"))?;
        let dropout1 = Dropout::new(dropout_ratio);
        let dropout2 = Dropout::new(dropout_ratio);

        let dense = PositionWiseFeedForward::new(vb.pp("dense"), num_hidden, num_hidden * 4)?;

        Ok(Self {
            num_hidden,
            num_in,
            scale: config.scale_factor,
            dropout1,
            dropout2,
            norm1,
            norm2,
            w1,
            w2,
            w3,
            dense,
        })
    }
    pub fn forward(
        &self,
        h_v: &Tensor,
        h_e: &Tensor,
        mask_v: Option<&Tensor>,
        mask_attend: Option<&Tensor>,
        training: Option<bool>,
    ) -> Result<Tensor> {
        let training_bool = training.unwrap_or(false);

        let expand_shape = [
            h_e.dims()[0], // batch (1)
            h_e.dims()[1], // sequence length (93)
            h_e.dims()[2], // number of neighbors (24)
            h_v.dims()[2], // keep original hidden dim (128)
        ];
        let h_v_expand = h_v.unsqueeze(D::Minus2)?.expand(&expand_shape)?;
        let h_ev = Tensor::cat(&[&h_v_expand, h_e], D::Minus1)?.contiguous()?;

        let h_message = self
            .w1
            .forward(&h_ev)?
            .gelu()?
            .apply(&self.w2)?
            .gelu()?
            .apply(&self.w3)?;

        let h_message = self.dropout1.forward(&h_message, training_bool)?;
        let h_message = if let Some(mask) = mask_attend {
            mask.unsqueeze(D::Minus1)?.broadcast_mul(&h_message)?
        } else {
            h_message
        };
        let dh = (h_message.sum(D::Minus2)? / self.scale)?;
        let h_v = self.norm1.forward(&(h_v + dh)?)?;
        let dh = self.dense.forward(&h_v)?;
        let dh_dropout = self.dropout2.forward(&dh, training_bool)?;
        let h_v = self.norm2.forward(&(h_v + dh_dropout)?)?;
        let h_v = if let Some(mask) = mask_v {
            mask.unsqueeze(D::Minus1)?.broadcast_mul(&h_v)?
        } else {
            h_v
        };
        Ok(h_v)
    }
}

/// ProteinMPNN Model
/// - [link](https://github.com/dauparas/LigandMPNN/blob/main/model_utils.py#L10C7-L10C18)
pub struct ProteinMPNN {
    pub(crate) config: ProteinMPNNConfig,
    pub(crate) decoder_layers: Vec<DecLayer>,
    pub(crate) device: Device,
    pub(crate) encoder_layers: Vec<EncLayer>,
    pub(crate) features: ProteinFeaturesModel,
    pub(crate) w_e: Linear,
    pub(crate) w_out: Linear,
    pub(crate) w_s: Embedding,
}

impl ProteinMPNN {
    pub fn load(vb: VarBuilder, config: &ProteinMPNNConfig) -> Result<Self> {
        let hidden_dim = config.hidden_dim as usize;
        let edge_features = config.edge_features as usize;
        let num_letters = config.num_letters as usize;
        let vocab_size = config.vocab as usize;

        // Create encoder and decoder layers using iterators
        let encoder_layers = (0..config.num_encoder_layers)
            .map(|i| EncLayer::load(vb.pp("encoder_layers"), config, i as i32))
            .collect::<Result<Vec<_>>>()?;

        let decoder_layers = (0..config.num_decoder_layers)
            .map(|i| DecLayer::load(vb.pp("decoder_layers"), config, i as i32))
            .collect::<Result<Vec<_>>>()?;

        // Initialize weights
        let w_e = linear::linear(edge_features, hidden_dim, vb.pp("W_e"))?;
        let w_out = linear::linear(hidden_dim, num_letters, vb.pp("W_out"))?;
        let w_s = embedding(vocab_size, hidden_dim, vb.pp("W_s"))?;
        // Features
        let features = ProteinFeaturesModel::load(vb.pp("features"), config.clone())?;

        Ok(Self {
            config: config.clone(), // todo: check the\is clone later...
            decoder_layers,
            device: vb.device().clone(),
            encoder_layers,
            features,
            w_e,
            w_out,
            w_s,
        })
    }
    fn encode(&self, features: &ProteinFeatures) -> Result<(Tensor, Tensor, Tensor)> {
        let s_true = &features.get_sequence();
        let base_dtype = DType::F32;
        let mask = match features.get_sequence_mask() {
            Some(m) => m,
            None => &Tensor::ones_like(&s_true)?,
        };
        match self.config.model_type {
            ModelTypes::ProteinMPNN => {
                let (e, e_idx) = self.features.forward(features, &self.device)?;
                let mut h_v = Tensor::zeros(
                    (e.dim(0)?, e.dim(1)?, e.dim(D::Minus1)?),
                    base_dtype,
                    &self.device,
                )?;
                let mut h_e = self.w_e.forward(&e)?;
                let mask_attend = if let Some(mask) = features.get_sequence_mask() {
                    let mask_expanded = mask.unsqueeze(D::Minus1)?; // [B, L, 1]
                    let mask_gathered = gather_nodes(&mask_expanded, &e_idx)?;
                    let mask_gathered = mask_gathered.squeeze(D::Minus1)?;
                    let mask_attend = {
                        let mask_unsqueezed = mask.unsqueeze(D::Minus1)?; // [B, L, 1]
                        let mask_expanded = mask_unsqueezed.expand((
                            mask_gathered.dim(0)?, // batch
                            mask_gathered.dim(1)?, // sequence length
                            mask_gathered.dim(2)?, // number of neighbors
                        ))?;
                        mask_expanded.mul(&mask_gathered)?
                    };
                    mask_attend
                } else {
                    let (b, l) = mask.dims2()?;
                    let ones = Tensor::ones((b, l, e_idx.dim(2)?), DType::F32, &self.device)?;
                    ones
                };
                println!("Beginning the Encoding...");
                for (_, layer) in self.encoder_layers.iter().enumerate() {
                    let (new_h_v, new_h_e) = layer.forward(
                        &h_v,
                        &h_e,
                        &e_idx,
                        Some(&mask),
                        Some(&mask_attend),
                        Some(false),
                    )?;
                    h_v = new_h_v;
                    h_e = new_h_e;
                }
                Ok((h_v, h_e, e_idx))
            }
            ModelTypes::LigandMPNN => {
                todo!()
                //     let (v, e, e_idx, y_nodes, y_edges, y_m) = self.features.forward(feature_dict)?;
                //     let mut h_v = Tensor::zeros((e.dim(0)?, e.dim(1)?, e.dim(-1)?), device)?;
                //     let mut h_e = self.w_e.forward(&e)?;
                //     let h_e_context = self.w_v.forward(&v)?;
                //     let mask_attend = gather_nodes(&mask.unsqueeze(-1)?, &e_idx)?.squeeze(-1)?;
                //     let mask_attend = mask.unsqueeze(-1)? * &mask_attend;
                //
                //     for layer in &self.encoder_layers {
                //         let (new_h_v, new_h_e) =
                //             layer.forward(&h_v, &h_e, &e_idx, &mask, &mask_attend)?;
                //         h_v = new_h_v;
                //         h_e = new_h_e;
                //     }
                //
                //     let mut h_v_c = self.w_c.forward(&h_v)?;
                //     let y_m_edges = &y_m.unsqueeze(-1)? * &y_m.unsqueeze(-2)?;
                //     let mut y_nodes = self.w_nodes_y.forward(&y_nodes)?;
                //     let y_edges = self.w_edges_y.forward(&y_edges)?;
                //
                //     for (y_layer, c_layer) in self
                //         .y_context_encoder_layers
                //         .iter()
                //         .zip(&self.context_encoder_layers)
                //     {
                //         y_nodes = y_layer.forward(&y_nodes, &y_edges, &y_m, &y_m_edges)?;
                //         let h_e_context_cat = Tensor::cat(&[&h_e_context, &y_nodes], -1)?;
                //         h_v_c = c_layer.forward(&h_v_c, &h_e_context_cat, &mask, &y_m)?;
                //     }
                //     h_v_c = self.v_c.forward(&h_v_c)?;
                //     h_v = &h_v + &self.v_c_norm.forward(&self.dropout.forward(&h_v_c)?)?;
                //     Ok((h_v, h_e, e_idx))
            }
        }
    }
    pub fn sample(
        &self,
        features: &ProteinFeatures,
        temperature: f64,
        seed: u64,
    ) -> Result<ScoreOutput> {
        let sample_dtype = DType::F32;
        let ProteinFeatures {
            s,
            x_mask,
            // symmetry_residues,
            // symmetry_weights,
            ..
        } = features;
        let s_true = s.to_dtype(sample_dtype)?;
        let device = s.device();
        let (b, l) = s.dims2()?;
        // Todo: This is a hack. we should be passing in encoded chains.
        // let chain_mask = Tensor::ones_like(&x_mask.as_ref().unwrap())?.to_dtype(sample_dtype)?;
        // let chain_mask = x_mask.as_ref().unwrap().mul(&chain_mask)?;
        let chain_mask = x_mask.as_ref().unwrap().to_dtype(sample_dtype)?;
        let (h_v, h_e, e_idx) = self.encode(features)?;
        let rand_tensor = Tensor::randn(0f32, 0.25f32, (b, l), device)?.to_dtype(sample_dtype)?;
        let decoding_order = (&chain_mask + 0.0001)?
            .mul(&rand_tensor.abs()?)?
            .arg_sort_last_dim(false)?;
        // Todo add  bias
        // # [B,L,21] - amino acid bias per position
        //  bias = feature_dict["bias"]
        let bias = Tensor::ones((b, l, 21), sample_dtype, device)?;
        println!("todo: We need to add the bias!");
        let symmetry_residues: Option<Vec<i32>> = None;
        match symmetry_residues {
            None => {
                let e_idx = e_idx.repeat(&[b, 1, 1])?;
                let permutation_matrix_reverse = one_hot(decoding_order.clone(), l, 1f32, 0f32)?
                    .to_dtype(sample_dtype)?
                    .contiguous()?;
                let tril = Tensor::tril2(l, sample_dtype, device)?;
                let tril = tril.unsqueeze(0)?;
                let temp = tril
                    .matmul(&permutation_matrix_reverse.transpose(1, 2)?)?
                    .contiguous()?; //tensor of shape (b, i, q)
                let order_mask_backward = temp
                    .matmul(&permutation_matrix_reverse.transpose(1, 2)?)?
                    .contiguous()?; // This will give us a tensor of shape (b, q, p)
                let mask_attend = order_mask_backward
                    .gather(&e_idx, 2)?
                    .unsqueeze(D::Minus1)?;
                let mask_1d = x_mask.as_ref().unwrap().reshape((b, l, 1, 1))?;
                // Broadcast mask_1d to match mask_attend's shape
                let mask_1d = mask_1d
                    .broadcast_as(mask_attend.shape())?
                    .to_dtype(sample_dtype)?;
                let mask_bw = mask_1d.mul(&mask_attend)?;
                let mask_fw = mask_1d.mul(&(Tensor::ones_like(&mask_attend)? - mask_attend)?)?;
                // Note: `sample` begins to diverge from the `score` here.
                // repeat for decoding
                let s_true = s_true.repeat((b, 1))?;
                let h_v = h_v.repeat((b, 1, 1))?;
                let h_e = h_e.repeat((b, 1, 1, 1))?;
                let mask = x_mask.as_ref().unwrap().repeat((b, 1))?.contiguous()?;
                let chain_mask = &chain_mask.repeat((b, 1))?;
                let bias = bias.repeat((b, 1, 1))?;
                let mut all_probs = Tensor::zeros((b, l, 20), sample_dtype, device)?;
                // why is this one 21 and the others are 20?
                let mut all_log_probs = Tensor::zeros((b, l, 21), sample_dtype, device)?;
                let mut h_s = Tensor::zeros_like(&h_v)?;
                // note: we this value of 20 is `X`. We will need to replace the values below, not add them
                let mut s = Tensor::full(20u32, (b, l), device)?;
                let mut h_v_stack = vec![h_v.clone()];

                for _ in 0..self.decoder_layers.len() {
                    let zeros = Tensor::zeros_like(&h_v)?;
                    h_v_stack.push(zeros);
                }
                let h_ex_encoder = cat_neighbors_nodes(&Tensor::zeros_like(&h_s)?, &h_e, &e_idx)?;
                let h_exv_encoder = cat_neighbors_nodes(&h_v, &h_ex_encoder, &e_idx)?;
                let mask_fw = mask_fw
                    .broadcast_as(h_exv_encoder.shape())?
                    .to_dtype(h_exv_encoder.dtype())?;
                let h_exv_encoder_fw = mask_fw.mul(&h_exv_encoder)?;
                for t_ in 0..l {
                    let t = decoding_order.i((.., t_))?;
                    let t_gather = t.unsqueeze(1)?; // Shape [B, 1]
                                                    // Gather masks and bias
                    let chain_mask_t = chain_mask.gather(&t_gather, 1)?.squeeze(1)?;
                    let mask_t = mask.gather(&t_gather, 1)?.squeeze(1)?.contiguous()?;
                    let bias_t = bias
                        .gather(&t_gather.unsqueeze(2)?.expand((b, 1, 21))?.contiguous()?, 1)?
                        .squeeze(1)?;
                    // Gather edge and node indices/features
                    let e_idx_t = e_idx
                        .gather(
                            &t_gather
                                .unsqueeze(2)?
                                .expand((b, 1, e_idx.dim(2)?))?
                                .contiguous()?,
                            1,
                        )?
                        .contiguous()?;
                    let h_e_t = h_e.gather(
                        &t_gather
                            .unsqueeze(2)?
                            .unsqueeze(3)?
                            .expand((b, 1, h_e.dim(2)?, h_e.dim(3)?))?
                            .contiguous()?,
                        1,
                    )?;
                    let n = e_idx_t.dim(2)?; // number of neighbors
                    let c = h_s.dim(2)?; // channels/features
                    let h_e_t = h_e_t
                        .squeeze(1)? // [B, N, C]
                        .unsqueeze(1)? // [B, 1, N, C]
                        .expand((b, l, n, c))? // [B, L, N, C]
                        .contiguous()?;
                    let e_idx_t = e_idx_t
                        .expand((b, l, n))? // [B, L, N]
                        .contiguous()?;
                    let h_es_t = cat_neighbors_nodes(&h_s, &h_e_t, &e_idx_t)?;
                    let h_exv_encoder_t = h_exv_encoder_fw.gather(
                        &t_gather
                            .unsqueeze(2)?
                            .unsqueeze(3)?
                            .expand((b, 1, h_exv_encoder_fw.dim(2)?, h_exv_encoder_fw.dim(3)?))?
                            .contiguous()?,
                        1,
                    )?;
                    let mask_bw_t = mask_bw.gather(
                        &t_gather
                            .unsqueeze(2)?
                            .unsqueeze(3)?
                            .expand((b, 1, mask_bw.dim(2)?, mask_bw.dim(3)?))?
                            .contiguous()?,
                        1,
                    )?;

                    // Decoder layers loop
                    for l in 0..self.decoder_layers.len() {
                        let h_v_stack_l = &h_v_stack[l];
                        let h_esv_decoder_t = cat_neighbors_nodes(h_v_stack_l, &h_es_t, &e_idx_t)?;
                        let h_v_t = h_v_stack_l.gather(
                            &t_gather
                                .unsqueeze(2)?
                                .expand((b, 1, h_v_stack_l.dim(2)?))?
                                .contiguous()?,
                            1,
                        )?;
                        let mask_bw_t = mask_bw_t.expand(h_esv_decoder_t.dims())?.contiguous()?;
                        let h_exv_encoder_t = h_exv_encoder_t
                            .expand(h_esv_decoder_t.dims())?
                            .contiguous()?
                            .to_dtype(sample_dtype)?;
                        let h_esv_t = mask_bw_t
                            .mul(&h_esv_decoder_t.to_dtype(sample_dtype)?)?
                            .add(&h_exv_encoder_t)?
                            .to_dtype(sample_dtype)?
                            .contiguous()?;
                        let h_v_t = h_v_t
                            .expand((
                                h_esv_t.dim(0)?, // batch size
                                h_esv_t.dim(1)?, // sequence length (93)
                                h_v_t.dim(2)?,   // features (128)
                            ))?
                            .contiguous()?;
                        let decoder_output = self.decoder_layers[l].forward(
                            &h_v_t,
                            &h_esv_t,
                            Some(&mask_t),
                            None,
                            None,
                        )?;
                        let t_expanded = t_gather.reshape(&[b])?; // This will give us a 1D tensor of shape [b]
                        let decoder_output = decoder_output
                            .narrow(1, 0, 1)?
                            .squeeze(1)? // Now [1, 128]
                            .unsqueeze(1)?; // Now [1, 1, 128] - same rank as target
                        h_v_stack[l + 1] =
                            h_v_stack[l + 1].index_add(&t_expanded, &decoder_output, 1)?;
                        // h_v_stack[l + 1] =
                        //     h_v_stack[l + 1].index_add(&t_expanded, &decoder_output, 1)?;
                    }
                    let h_v_t = h_v_stack
                        .last()
                        .unwrap()
                        .gather(
                            &t_gather
                                .unsqueeze(2)?
                                .expand((b, 1, h_v_stack.last().unwrap().dim(2)?))?
                                .contiguous()?,
                            1,
                        )?
                        .squeeze(1)?;
                    // Generate logits and probabilities
                    let logits = self.w_out.forward(&h_v_t)?;
                    let log_probs = log_softmax(&logits, D::Minus1)?;

                    // explicit for OoO
                    let probs = {
                        let biased_logits = logits.add(&bias_t)?; // (logits + bias_t)
                        let scaled_logits = (biased_logits / temperature)?; // (logits + bias_t) / temperature
                        softmax(&scaled_logits, D::Minus1)? // softmax((logits + bias_t) / temperature)
                    };

                    let probs_sample = probs
                        .narrow(1, 0, 20)?
                        .div(&probs.narrow(1, 0, 20)?.sum_keepdim(1)?.expand((b, 20))?)?;
                    // Sample new token
                    let sum = probs_sample.sum(1)?;
                    let probs_sample_1d = probs_sample
                        .squeeze(0)? // Remove batch dimension -> [20]
                        .clamp(1e-10, 1.0)?
                        .broadcast_div(&sum)?
                        .contiguous()?;

                    let s_t = multinomial_sample(&probs_sample_1d, temperature, seed)?;
                    let s_t = s_t.to_dtype(sample_dtype)?;
                    let s_true = s_true.to_dtype(sample_dtype)?;
                    let s_true_t = s_true.gather(&t_gather, 1)?.squeeze(1)?;
                    let s_t = s_t
                        .mul(&chain_mask_t)?
                        .add(&s_true_t.mul(&(&chain_mask_t.neg()? + 1.0)?)?)?
                        .to_dtype(DType::U32)?;

                    let s_t_idx = s_t.to_dtype(DType::U32)?;
                    let s_t_idx = s_t_idx.reshape(&[s_t_idx.dim(0)?])?;
                    let h_s_update = self.w_s.forward(&s_t_idx)?.unsqueeze(1)?;
                    let t_gather_expanded = t_gather.reshape(&[b])?;
                    let h_s_update = h_s_update.squeeze(0)?.unsqueeze(1)?;
                    h_s =
                        h_s.index_add(&t_gather_expanded, &Tensor::zeros_like(&h_s_update)?, 1)?;
                    h_s = h_s.index_add(&t_gather_expanded, &h_s_update, 1)?;

                    s = {
                        let dim = 1;
                        let start = t_gather.squeeze(0)?.squeeze(0)?.to_scalar::<u32>()? as usize;
                        let s_t_expanded = s_t.unsqueeze(1)?;
                        s.slice_scatter(&s_t_expanded, dim, start)?
                    };

                    let probs_update = chain_mask_t
                        .unsqueeze(1)?
                        .unsqueeze(2)?
                        .expand((b, 1, 20))?
                        .mul(&probs_sample.unsqueeze(1)?)?;
                    let t_expanded = t_gather.reshape(&[b])?;
                    let probs_update = probs_update
                        .squeeze(1)? // Remove extra dimension
                        .unsqueeze(1)?;
                    all_probs =
                        all_probs.index_add(&t_expanded, &Tensor::zeros_like(&probs_update)?, 1)?;
                    all_probs = all_probs.index_add(&t_expanded, &probs_update, 1)?;
                    let log_probs_update = chain_mask_t
                        .unsqueeze(1)?
                        .unsqueeze(2)?
                        .expand((b, 1, 21))?
                        .mul(&log_probs.unsqueeze(1)?)?
                        .squeeze(1)?
                        .unsqueeze(1)?;

                    all_log_probs = all_log_probs.index_add(
                        &t_expanded,
                        &Tensor::zeros_like(&log_probs_update)?,
                        1,
                    )?;
                    all_log_probs = all_log_probs.index_add(&t_expanded, &log_probs_update, 1)?;
                }

                println!("Before Score");
                Ok(ScoreOutput {
                    s,
                    log_probs: all_probs,
                    logits: all_log_probs,
                    decoding_order,
                })
            }
            Some(symmetry_residues) => {
                todo!()
                // // note this is a literal translation of the code... Howver I think this could lead to
                // // possible unintentional overwriting of value - e.g. if there are multiple identical
                // // values in the index. (I guess you might expect that if they are symetrical. Howver the
                // // weights do not have to be the same)
                // let symmetry_weights = symmetry_weights.as_ref().unwrap();
                // // let symmetry_weights_tensor = Tensro::ones(l, candle_core::DType::F32, device)?;
                // let mut symmetry_weights_vec = vec![1.0_f64; l];
                // for (i1, item_list) in symmetry_residues.iter().enumerate() {
                //     for (i2, &item) in item_list.iter().enumerate() {
                //         let value = symmetry_weights[i1][i2];
                //         symmetry_weights_vec[item as usize] = value;
                //     }
                // }

                // let symmetry_weights_tensor = Tensor::from_vec(symmetry_weights_vec, l, device)?;

                // // let flattened: Vec<i64> = new_decoding_order.into_iter().flatten().collect();
                // let mut new_decoding_order: Vec<Vec<i64>> = Vec::new();
                // let decoding_order_vec: Vec<i64> = decoding_order.get(0)?.to_vec1()?;
                // for &t_dec in &decoding_order_vec {
                //     if !new_decoding_order.iter().flatten().any(|&x| x == t_dec) {
                //         let list_a: Vec<&Vec<i64>> = symmetry_residues
                //             .iter()
                //             .filter(|item| item.contains(&t_dec))
                //             .collect();
                //         if !list_a.is_empty() {
                //             new_decoding_order.push(list_a[0].clone());
                //         } else {
                //             new_decoding_order.push(vec![t_dec]);
                //         }
                //     }
                // }
                // let flattened_order: Vec<i64> =
                //     new_decoding_order.clone().into_iter().flatten().collect();
                // let decoding_order = Tensor::from_vec(flattened_order, l, device)?
                //     .unsqueeze(0)?
                //     .repeat((b, 1))?;

                // // shuffle the decoding. Note: This is now non-deterministic
                // // let mut rng = thread_rng();
                // // let mut new_decoding_order: Vec<i64> = decoding_order_vec.clone();
                // // new_decoding_order.shuffle(&mut rng);
                // // let decoding_order =
                // //     Tensor::from_vec(new_decoding_order, l, device)?.repeat((b, 1))?;

                // let permutation_matrix_reverse = one_hot(decoding_order, l, 1., 0.)?;

                // let tril = Tensor::tril2(l, DType::F64, device)?;
                // let temp = tril.matmul(&permutation_matrix_reverse.transpose(1, 2)?)?; // (b, i, q)
                // let order_mask_backward =
                //     temp.matmul(&permutation_matrix_reverse.transpose(1, 2)?)?; // shape (b, q, p)
                // let mask_attend = order_mask_backward
                //     .gather(&e_idx, 2)?
                //     .unsqueeze(D::Minus1)?;

                // let mask_1d = x_mask.unwrap().reshape((b, l, 1, 1))?;
                // let mask_bw = mask_1d.mul(&mask_attend)?;
                // let mask_fw = mask_1d.mul(&(Tensor::ones_like(&mask_attend)? - mask_attend)?)?;

                // // Repeat for decoding
                // let s_true = s_true.repeat((b, 1))?;
                // let h_v = h_v.repeat((b, 1, 1))?;
                // let h_e = h_e.repeat((b, 1, 1, 1))?;
                // let e_idx = e_idx.repeat((b, 1, 1))?;
                // let mask_fw = mask_fw.repeat((b, 1, 1, 1))?;
                // let mask_bw = mask_bw.repeat((b, 1, 1, 1))?;
                // let chain_mask = chain_mask.repeat((b, 1))?;
                // let mask = x_mask.unwrap().repeat((b, 1))?;
                // // Todo: fix bias
                // let bias = Tensor::zeros((b, l, 20), DType::F32, device)?;
                // let bias = bias.repeat((b, 1, 1))?;
                // let all_probs = Tensor::zeros((b, l, 20), candle_core::DType::F32, device)?;
                // let all_log_probs = Tensor::zeros((b, l, 21), candle_core::DType::F32, device)?;
                // let h_s = Tensor::zeros_like(&h_v)?;
                // let s = (Tensor::ones((b, l), candle_core::DType::I64, device)? * 20.)?;

                // let mut h_v_stack = vec![h_v.clone()];
                // h_v_stack.extend(
                //     (0..self.decoder_layers.len()).map(|_| Tensor::zeros_like(&h_v).unwrap()),
                // );
                // let h_ex_encoder = cat_neighbors_nodes(&Tensor::zeros_like(&h_s)?, &h_e, &e_idx)?;
                // let h_exv_encoder = cat_neighbors_nodes(&h_v, &h_ex_encoder, &e_idx)?;
                // let h_exv_encoder_fw = mask_fw.mul(&h_exv_encoder)?;

                // for t_list in new_decoding_order {
                //     let mut total_logits = Tensor::zeros((b, 21), candle_core::DType::F32, device)?;

                //     for &t in &t_list {
                //         // Select the t-th column from chain_mask
                //         let chain_mask_t = chain_mask.i((.., t as usize))?;
                //         let mask_t = mask.i((.., t as usize))?;
                //         let bias_t = bias.i((.., t as usize))?;

                //         let e_idx_t = e_idx.narrow(1, t as usize, 1)?;
                //         let h_e_t = h_e.narrow(1, t as usize, 1)?;
                //         let h_es_t = cat_neighbors_nodes(&h_s, &h_e_t, &e_idx_t)?;
                //         let h_exv_encoder_t = h_exv_encoder_fw.narrow(1, t as usize, 1)?;

                //         for (l, layer) in self.decoder_layers.iter().enumerate() {
                //             let h_esv_decoder_t =
                //                 cat_neighbors_nodes(&h_v_stack[l], &h_es_t, &e_idx_t)?;
                //             let h_v_t = h_v_stack[l].narrow(1, t as usize, 1)?;
                //             let h_esv_t = mask_bw
                //                 .narrow(1, t as usize, 1)?
                //                 .mul(&h_esv_decoder_t)?
                //                 .add(&h_exv_encoder_t)?;
                //             let new_h_v = layer.forward(
                //                 &h_v_t,
                //                 &h_esv_t,
                //                 Some(&mask_t.unsqueeze(1)?),
                //                 None,
                //                 None,
                //             )?;
                //             h_v_stack[l + 1].slice_set(&new_h_v, 1, t as usize)?;
                //         }

                //         let h_v_t = h_v_stack.last().unwrap().i((.., t as usize))?;
                //         let logits = self.w_out.forward(&h_v_t)?;
                //         let log_probs = log_softmax(&logits, D::Minus1)?;
                //         let updated_probs = chain_mask_t.unsqueeze(1)?.mul(&log_probs)?;
                //         all_log_probs.slice_set(&updated_probs, 1, t as usize)?;
                //         let symvec = &symmetry_weights[t as usize];
                //         let symten = Tensor::new(symvec.as_slice(), device)?;
                //         total_logits = total_logits.add(&logits.mul(&symten)?)?;
                //     }

                //     // todo: bias t not defined here!
                //     let bias_t = Tensor::zeros_like(&total_logits)?;
                //     let temperature = 20.;
                //     let probs = softmax(&(total_logits.add(&bias_t)? / temperature)?, D::Minus1)?;
                //     let probs_sample = probs
                //         .narrow(1, 0, 20)?
                //         .div(&probs.narrow(1, 0, 20)?.sum_keepdim(1)?)?;

                //     // replce this with sampleing using built in Logit Processing
                //     // let s_t = probs_sample.multinomial(1, true)?.squeeze(1)?;
                //     let seed = 32;
                //     let mut logproc = LogitsProcessor::new(seed, Some(temperature), Some(0.25));
                //     let logits: Vec<u32> = vec![(); l]
                //         .iter()
                //         .map(|_| logproc.sample(&probs_sample))
                //         .filter_map(Result::ok)
                //         .collect();
                //     let s_t = Tensor::from_vec(logits, l, device)?;

                //     for &t in &t_list {
                //         let chain_mask_t = chain_mask.i((.., t as usize))?;
                //         let result = chain_mask_t.unsqueeze(1)?.mul(&probs_sample)?;

                //         all_probs.slice_set(&result, 1, t as usize)?;

                //         let s_true_t = s_true.i((.., t as usize))?;
                //         let s_t = s_t
                //             .mul(&chain_mask_t)?
                //             .add(
                //                 &s_true_t
                //                     .mul(&(Tensor::ones_like(&chain_mask_t)? - chain_mask_t)?)?,
                //             )?
                //             .to_dtype(candle_core::DType::I64)?;

                //         let h_s_t = self.w_s.forward(&s_t)?;
                //         h_s.slice_set(&h_s_t.unsqueeze(1)?, 1, t as usize)?;
                //         s.slice_set(&s_t.unsqueeze(1)?, 1, t as usize)?;
                //     }
                // }
                // Ok(ScoreOutput {
                //     s,
                //     // sampling_probs: all_probs,
                //     log_probs: all_log_probs,
                //     logits: all_probs,
                //     decoding_order,
                // })
            }
        }
    }

    fn single_aa_score() {
        todo!()
    }
    pub fn score(&self, features: &ProteinFeatures, use_sequence: bool) -> Result<ScoreOutput> {
        let sample_dtype = DType::F32;
        let ProteinFeatures { s, x_mask, .. } = &features;

        let s_true = &s.clone();
        let device = s_true.device();
        let (b, l) = s_true.dims2()?;
        let mask = &x_mask.as_ref().clone();
        let b_decoder: usize = b;

        // Todo: This is a hack. we should be passing in encoded chains.
        // Update chain_mask to include missing regions
        let chain_mask = Tensor::zeros_like(mask.unwrap())?.to_dtype(sample_dtype)?;
        let chain_mask = mask.unwrap().mul(&chain_mask)?;

        // encode ...
        let (h_v, h_e, e_idx) = self.encode(features)?;
        let rand_tensor = Tensor::randn(0f32, 1f32, (b, l), device)?.to_dtype(sample_dtype)?;
        // Compute decoding order
        let decoding_order = (chain_mask + 0.001)?
            .mul(&rand_tensor.abs()?)?
            .arg_sort_last_dim(false)?;

        let symmetry_residues: Option<Vec<i32>> = None;

        let (mask_fw, mask_bw, e_idx, decoding_order) = match symmetry_residues {
            Some(symmetry_residues) => {
                todo!();
            }
            None => {
                let e_idx = e_idx.repeat(&[b_decoder, 1, 1])?;
                let permutation_matrix_reverse = one_hot(decoding_order.clone(), l, 1f32, 0f32)?
                    .to_dtype(sample_dtype)?
                    .contiguous()?;
                let tril = Tensor::tril2(l, sample_dtype, device)?;
                let tril = tril.unsqueeze(0)?;
                let temp = tril
                    .matmul(&permutation_matrix_reverse.transpose(1, 2)?)?
                    .contiguous()?; // shape (b, i, q)
                let order_mask_backward = temp
                    .matmul(&permutation_matrix_reverse.transpose(1, 2)?)?
                    .contiguous()?; // shape (b, q, p)
                let mask_attend = order_mask_backward
                    .gather(&e_idx, 2)?
                    .unsqueeze(D::Minus1)?;
                let mask_1d = mask.unwrap().reshape((b, l, 1, 1))?;
                // Broadcast mask_1d to match mask_attend's shape
                let mask_1d = mask_1d
                    .broadcast_as(mask_attend.shape())?
                    .to_dtype(sample_dtype)?;
                let mask_bw = mask_1d.mul(&mask_attend)?;
                let mask_fw = mask_1d.mul(&(mask_attend - 1.0)?.neg()?)?;
                (mask_fw, mask_bw, e_idx, decoding_order)
            }
        };
        let b_decoder = b_decoder;
        let s_true = s_true.repeat(&[b_decoder, 1])?;
        let h_v = h_v.repeat(&[b_decoder, 1, 1])?;
        let h_e = h_e.repeat(&[b_decoder, 1, 1, 1])?;
        let mask = x_mask.as_ref().unwrap().repeat(&[b_decoder, 1])?;
        let h_s = self.w_s.forward(&s_true)?; // embedding layer
        let h_es = cat_neighbors_nodes(&h_s, &h_e, &e_idx)?;
        // Build encoder embeddings
        let h_ex_encoder = cat_neighbors_nodes(&Tensor::zeros_like(&h_s)?, &h_e, &e_idx)?;
        let h_exv_encoder = cat_neighbors_nodes(&h_v, &h_ex_encoder, &e_idx)?;
        let h_exv_encoder_fw = mask_fw
            .broadcast_as(h_exv_encoder.shape())?
            .to_dtype(h_exv_encoder.dtype())?
            .mul(&h_exv_encoder)?;
        let mut h_v = h_v;
        if !use_sequence {
            for layer in &self.decoder_layers {
                h_v = layer.forward(&h_v, &h_exv_encoder_fw, Some(&mask), None, None)?;
            }
        } else {
            for layer in &self.decoder_layers {
                let h_esv = cat_neighbors_nodes(&h_v, &h_es, &e_idx)?;
                let h_esv = mask_bw.mul(&h_esv)?.add(&h_exv_encoder_fw)?;
                h_v = layer.forward(&h_v, &h_esv, Some(&mask), None, None)?;
            }
        }
        let logits = self.w_out.forward(&h_v)?;
        let log_probs = log_softmax(&logits, D::Minus1)?;

        Ok(ScoreOutput {
            s: s_true,
            log_probs,
            logits,
            decoding_order,
        })
    }
}