ferritin_plms/ligandmpnn/model.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
//! A message passing protein design neural network
//! that samples sequences diffusing conditional probabilities.
//!
//! - See the [LigandMPNN Repo](https://github.com/dauparas/LigandMPNN)
//!
use std::collections::HashMap;
use super::configs::{ModelTypes, ProteinMPNNConfig};
use super::proteinfeatures::ProteinFeatures;
use super::proteinfeaturesmodel::ProteinFeaturesModel;
use super::utilities::{cat_neighbors_nodes, gather_nodes, int_to_aa1};
use candle_core::safetensors;
use candle_core::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::encoding::one_hot;
use candle_nn::ops::{log_softmax, softmax};
use candle_nn::{embedding, layer_norm, linear, Dropout, Embedding, LayerNorm, Linear, VarBuilder};
use candle_transformers::generation::LogitsProcessor;
// refactoring common fn
fn concat_node_tensors(h_v: &Tensor, h_e: &Tensor, e_idx: &Tensor) -> Result<Tensor> {
let h_ev = cat_neighbors_nodes(&h_v, h_e, e_idx)?;
let h_v_expand = h_v.unsqueeze(D::Minus2)?;
let expand_shape = [
h_ev.dims()[0],
h_ev.dims()[1],
h_ev.dims()[2],
h_v_expand.dims()[3],
];
let h_v_expand = h_v_expand.expand(&expand_shape)?.to_dtype(h_ev.dtype())?;
Tensor::cat(&[&h_v_expand, &h_ev], D::Minus1)?.contiguous()
}
// refactoring common fn
fn apply_dropout_and_norm(
input: &Tensor,
delta: &Tensor,
dropout: &Dropout,
norm: &LayerNorm,
training: bool,
) -> Result<Tensor> {
let delta_dropout = dropout.forward(delta, training)?;
norm.forward(&(input + delta_dropout)?)
}
pub fn multinomial_sample(probs: &Tensor, temperature: f64, seed: u64) -> Result<Tensor> {
let mut logits_processor = LogitsProcessor::new(
seed, // seed for reproducibility
Some(temperature), // temperature scaling
// None, // top_p (nucleus sampling), we don't need this
Some(0.95), // top_p (nucleus sampling), we don't need this
);
let idx = logits_processor.sample(probs)?;
// println!("Selected index: {}", idx);
if idx >= 21 {
println!("WARNING: Invalid index {} selected", idx);
}
Tensor::new(&[idx], probs.device())
}
// Primary Return Object from the ProtMPNN Model
#[derive(Clone, Debug)]
pub struct ScoreOutput {
// Sequence
pub(crate) s: Tensor,
pub(crate) log_probs: Tensor,
pub(crate) logits: Tensor,
pub(crate) decoding_order: Tensor,
}
impl ScoreOutput {
// S dims are [Batch, seqlength]
pub fn get_sequences(&self) -> Result<Vec<String>> {
let (b, l) = self.s.dims2()?;
let mut sequences = Vec::with_capacity(b);
for batch_idx in 0..b {
let mut sequence = String::with_capacity(l);
for pos in 0..l {
let aa_idx = self.s.get(batch_idx)?.get(pos)?.to_vec0::<u32>()?;
// println!("Position {}, Raw index: {}", pos, aa_idx);
let aa = int_to_aa1(aa_idx);
// println!("Converted to: {}", aa);
sequence.push(aa);
}
sequences.push(sequence);
}
Ok(sequences)
}
pub fn get_decoding_order(&self) -> Result<Vec<u32>> {
let values = self.decoding_order.flatten_all()?.to_vec1::<u32>()?;
Ok(values)
}
pub fn get_log_probs(&self) -> &Tensor {
&self.log_probs
}
pub fn save_as_safetensors(&self, filename: String) -> Result<()> {
let mut tensors = HashMap::new();
tensors.insert("S".to_string(), self.s.clone());
tensors.insert("log_probs".to_string(), self.log_probs.clone());
tensors.insert("logits".to_string(), self.logits.clone());
tensors.insert("decoding_order".to_string(), self.decoding_order.clone());
// Create directory if it doesn't exist
if let Some(parent) = std::path::Path::new(&filename).parent() {
std::fs::create_dir_all(parent)?;
}
safetensors::save(&tensors, &filename);
Ok(())
}
}
#[derive(Clone, Debug)]
struct PositionWiseFeedForward {
w1: Linear,
w2: Linear,
}
impl PositionWiseFeedForward {
fn new(vb: VarBuilder, dim_input: usize, dim_feedforward: usize) -> Result<Self> {
let w1 = linear::linear(dim_input, dim_feedforward, vb.pp("W_in"))?;
let w2 = linear::linear(dim_feedforward, dim_input, vb.pp("W_out"))?;
Ok(Self { w1, w2 })
}
}
impl Module for PositionWiseFeedForward {
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let x = self.w1.forward(x)?;
let x = x.gelu()?;
self.w2.forward(&x)
}
}
#[derive(Clone, Debug)]
pub struct EncLayer {
num_hidden: usize,
num_in: usize,
scale: f64,
dropout1: Dropout,
dropout2: Dropout,
dropout3: Dropout,
norm1: LayerNorm,
norm2: LayerNorm,
norm3: LayerNorm,
w1: Linear,
w2: Linear,
w3: Linear,
w11: Linear,
w12: Linear,
w13: Linear,
dense: PositionWiseFeedForward,
}
impl EncLayer {
pub fn load(vb: VarBuilder, config: &ProteinMPNNConfig, layer: i32) -> Result<Self> {
let vb = vb.pp(layer); // handle the layer number here.
let num_hidden = config.hidden_dim as usize;
let augment_eps = config.augment_eps as f64;
let num_in = (config.hidden_dim * 2) as usize;
let dropout_ratio = config.dropout_ratio;
let norm1 = layer_norm::layer_norm(num_hidden, augment_eps, vb.pp("norm1"))?;
let norm2 = layer_norm::layer_norm(num_hidden, augment_eps, vb.pp("norm2"))?;
let norm3 = layer_norm::layer_norm(num_hidden, augment_eps, vb.pp("norm3"))?;
let w1 = linear::linear(num_hidden + num_in, num_hidden, vb.pp("W1"))?;
let w2 = linear::linear(num_hidden, num_hidden, vb.pp("W2"))?;
let w3 = linear::linear(num_hidden, num_hidden, vb.pp("W3"))?;
let w11 = linear::linear(num_hidden + num_in, num_hidden, vb.pp("W11"))?;
let w12 = linear::linear(num_hidden, num_hidden, vb.pp("W12"))?;
let w13 = linear::linear(num_hidden, num_hidden, vb.pp("W13"))?;
let dropout1 = Dropout::new(dropout_ratio);
let dropout2 = Dropout::new(dropout_ratio);
let dropout3 = Dropout::new(dropout_ratio);
// note in the pytorch code they add the GELU activation here.
let dense = PositionWiseFeedForward::new(vb.pp("dense"), num_hidden, num_hidden * 4)?;
Ok(Self {
num_hidden,
num_in,
scale: config.scale_factor,
dropout1,
dropout2,
dropout3,
norm1,
norm2,
norm3,
w1,
w2,
w3,
w11,
w12,
w13,
dense,
})
}
fn forward(
&self,
h_v: &Tensor,
h_e: &Tensor,
e_idx: &Tensor,
mask_v: Option<&Tensor>,
mask_attend: Option<&Tensor>,
training: Option<bool>,
) -> Result<(Tensor, Tensor)> {
let training = training.unwrap_or(false);
let h_v = h_v.to_dtype(DType::F32)?;
let h_ev = concat_node_tensors(&h_v, h_e, e_idx)?;
let h_message = self
.w1
.forward(&h_ev)?
.gelu()?
.apply(&self.w2)?
.gelu()?
.apply(&self.w3)?;
let h_message = if let Some(mask) = mask_attend {
mask.unsqueeze(D::Minus1)?.broadcast_mul(&h_message)?
} else {
h_message
};
// Safe division with scale
let sum = h_message.sum(D::Minus2)?;
let scale = if self.scale == 0.0 { 1.0 } else { self.scale };
let dh = (sum / scale)?;
let h_v = apply_dropout_and_norm(&h_v, &dh, &self.dropout1, &self.norm1, training)?;
let dense_output = self.dense.forward(&h_v)?;
let h_v =
apply_dropout_and_norm(&h_v, &dense_output, &self.dropout2, &self.norm2, training)?;
let h_v = if let Some(mask) = mask_v {
mask.unsqueeze(D::Minus1)?.broadcast_mul(&h_v)?
} else {
h_v
};
let h_ev = concat_node_tensors(&h_v, h_e, e_idx)?;
let h_message = self
.w11
.forward(&h_ev)?
.gelu()?
.apply(&self.w12)?
.gelu()?
.apply(&self.w13)?;
let h_e = apply_dropout_and_norm(h_e, &h_message, &self.dropout3, &self.norm3, training)?;
Ok((h_v, h_e))
}
}
#[derive(Clone, Debug)]
pub struct DecLayer {
num_hidden: usize,
num_in: usize,
scale: f64,
dropout1: Dropout,
dropout2: Dropout,
norm1: LayerNorm,
norm2: LayerNorm,
w1: Linear,
w2: Linear,
w3: Linear,
dense: PositionWiseFeedForward,
}
impl DecLayer {
pub fn load(vb: VarBuilder, config: &ProteinMPNNConfig, layer: i32) -> Result<Self> {
let vb = vb.pp(layer); // handle the layer number here.
let num_hidden = config.hidden_dim as usize;
let augment_eps = config.augment_eps as f64;
let num_in = (config.hidden_dim * 3) as usize;
let dropout_ratio = config.dropout_ratio;
let norm1 = layer_norm::layer_norm(num_hidden, augment_eps, vb.pp("norm1"))?;
let norm2 = layer_norm::layer_norm(num_hidden, augment_eps, vb.pp("norm2"))?;
let w1 = linear::linear(num_hidden + num_in, num_hidden, vb.pp("W1"))?;
let w2 = linear::linear(num_hidden, num_hidden, vb.pp("W2"))?;
let w3 = linear::linear(num_hidden, num_hidden, vb.pp("W3"))?;
let dropout1 = Dropout::new(dropout_ratio);
let dropout2 = Dropout::new(dropout_ratio);
let dense = PositionWiseFeedForward::new(vb.pp("dense"), num_hidden, num_hidden * 4)?;
Ok(Self {
num_hidden,
num_in,
scale: config.scale_factor,
dropout1,
dropout2,
norm1,
norm2,
w1,
w2,
w3,
dense,
})
}
pub fn forward(
&self,
h_v: &Tensor,
h_e: &Tensor,
mask_v: Option<&Tensor>,
mask_attend: Option<&Tensor>,
training: Option<bool>,
) -> Result<Tensor> {
let training_bool = training.unwrap_or(false);
let expand_shape = [
h_e.dims()[0], // batch (1)
h_e.dims()[1], // sequence length (93)
h_e.dims()[2], // number of neighbors (24)
h_v.dims()[2], // keep original hidden dim (128)
];
let h_v_expand = h_v.unsqueeze(D::Minus2)?.expand(&expand_shape)?;
let h_ev = Tensor::cat(&[&h_v_expand, h_e], D::Minus1)?.contiguous()?;
let h_message = self
.w1
.forward(&h_ev)?
.gelu()?
.apply(&self.w2)?
.gelu()?
.apply(&self.w3)?;
let h_message = self.dropout1.forward(&h_message, training_bool)?;
let h_message = if let Some(mask) = mask_attend {
mask.unsqueeze(D::Minus1)?.broadcast_mul(&h_message)?
} else {
h_message
};
let dh = (h_message.sum(D::Minus2)? / self.scale)?;
let h_v = self.norm1.forward(&(h_v + dh)?)?;
let dh = self.dense.forward(&h_v)?;
let dh_dropout = self.dropout2.forward(&dh, training_bool)?;
let h_v = self.norm2.forward(&(h_v + dh_dropout)?)?;
let h_v = if let Some(mask) = mask_v {
mask.unsqueeze(D::Minus1)?.broadcast_mul(&h_v)?
} else {
h_v
};
Ok(h_v)
}
}
/// ProteinMPNN Model
/// - [link](https://github.com/dauparas/LigandMPNN/blob/main/model_utils.py#L10C7-L10C18)
pub struct ProteinMPNN {
pub(crate) config: ProteinMPNNConfig,
pub(crate) decoder_layers: Vec<DecLayer>,
pub(crate) device: Device,
pub(crate) encoder_layers: Vec<EncLayer>,
pub(crate) features: ProteinFeaturesModel,
pub(crate) w_e: Linear,
pub(crate) w_out: Linear,
pub(crate) w_s: Embedding,
}
impl ProteinMPNN {
pub fn load(vb: VarBuilder, config: &ProteinMPNNConfig) -> Result<Self> {
let hidden_dim = config.hidden_dim as usize;
let edge_features = config.edge_features as usize;
let num_letters = config.num_letters as usize;
let vocab_size = config.vocab as usize;
// Create encoder and decoder layers using iterators
let encoder_layers = (0..config.num_encoder_layers)
.map(|i| EncLayer::load(vb.pp("encoder_layers"), config, i as i32))
.collect::<Result<Vec<_>>>()?;
let decoder_layers = (0..config.num_decoder_layers)
.map(|i| DecLayer::load(vb.pp("decoder_layers"), config, i as i32))
.collect::<Result<Vec<_>>>()?;
// Initialize weights
let w_e = linear::linear(edge_features, hidden_dim, vb.pp("W_e"))?;
let w_out = linear::linear(hidden_dim, num_letters, vb.pp("W_out"))?;
let w_s = embedding(vocab_size, hidden_dim, vb.pp("W_s"))?;
// Features
let features = ProteinFeaturesModel::load(vb.pp("features"), config.clone())?;
Ok(Self {
config: config.clone(), // todo: check the\is clone later...
decoder_layers,
device: vb.device().clone(),
encoder_layers,
features,
w_e,
w_out,
w_s,
})
}
fn encode(&self, features: &ProteinFeatures) -> Result<(Tensor, Tensor, Tensor)> {
let s_true = &features.get_sequence();
let base_dtype = DType::F32;
let mask = match features.get_sequence_mask() {
Some(m) => m,
None => &Tensor::ones_like(&s_true)?,
};
match self.config.model_type {
ModelTypes::ProteinMPNN => {
let (e, e_idx) = self.features.forward(features, &self.device)?;
let mut h_v = Tensor::zeros(
(e.dim(0)?, e.dim(1)?, e.dim(D::Minus1)?),
base_dtype,
&self.device,
)?;
let mut h_e = self.w_e.forward(&e)?;
let mask_attend = if let Some(mask) = features.get_sequence_mask() {
let mask_expanded = mask.unsqueeze(D::Minus1)?; // [B, L, 1]
let mask_gathered = gather_nodes(&mask_expanded, &e_idx)?;
let mask_gathered = mask_gathered.squeeze(D::Minus1)?;
let mask_attend = {
let mask_unsqueezed = mask.unsqueeze(D::Minus1)?; // [B, L, 1]
let mask_expanded = mask_unsqueezed.expand((
mask_gathered.dim(0)?, // batch
mask_gathered.dim(1)?, // sequence length
mask_gathered.dim(2)?, // number of neighbors
))?;
mask_expanded.mul(&mask_gathered)?
};
mask_attend
} else {
let (b, l) = mask.dims2()?;
let ones = Tensor::ones((b, l, e_idx.dim(2)?), DType::F32, &self.device)?;
ones
};
println!("Beginning the Encoding...");
for (_, layer) in self.encoder_layers.iter().enumerate() {
let (new_h_v, new_h_e) = layer.forward(
&h_v,
&h_e,
&e_idx,
Some(&mask),
Some(&mask_attend),
Some(false),
)?;
h_v = new_h_v;
h_e = new_h_e;
}
Ok((h_v, h_e, e_idx))
}
ModelTypes::LigandMPNN => {
todo!()
// let (v, e, e_idx, y_nodes, y_edges, y_m) = self.features.forward(feature_dict)?;
// let mut h_v = Tensor::zeros((e.dim(0)?, e.dim(1)?, e.dim(-1)?), device)?;
// let mut h_e = self.w_e.forward(&e)?;
// let h_e_context = self.w_v.forward(&v)?;
// let mask_attend = gather_nodes(&mask.unsqueeze(-1)?, &e_idx)?.squeeze(-1)?;
// let mask_attend = mask.unsqueeze(-1)? * &mask_attend;
//
// for layer in &self.encoder_layers {
// let (new_h_v, new_h_e) =
// layer.forward(&h_v, &h_e, &e_idx, &mask, &mask_attend)?;
// h_v = new_h_v;
// h_e = new_h_e;
// }
//
// let mut h_v_c = self.w_c.forward(&h_v)?;
// let y_m_edges = &y_m.unsqueeze(-1)? * &y_m.unsqueeze(-2)?;
// let mut y_nodes = self.w_nodes_y.forward(&y_nodes)?;
// let y_edges = self.w_edges_y.forward(&y_edges)?;
//
// for (y_layer, c_layer) in self
// .y_context_encoder_layers
// .iter()
// .zip(&self.context_encoder_layers)
// {
// y_nodes = y_layer.forward(&y_nodes, &y_edges, &y_m, &y_m_edges)?;
// let h_e_context_cat = Tensor::cat(&[&h_e_context, &y_nodes], -1)?;
// h_v_c = c_layer.forward(&h_v_c, &h_e_context_cat, &mask, &y_m)?;
// }
// h_v_c = self.v_c.forward(&h_v_c)?;
// h_v = &h_v + &self.v_c_norm.forward(&self.dropout.forward(&h_v_c)?)?;
// Ok((h_v, h_e, e_idx))
}
}
}
pub fn sample(
&self,
features: &ProteinFeatures,
temperature: f64,
seed: u64,
) -> Result<ScoreOutput> {
let sample_dtype = DType::F32;
let ProteinFeatures {
s,
x_mask,
// symmetry_residues,
// symmetry_weights,
..
} = features;
let s_true = s.to_dtype(sample_dtype)?;
let device = s.device();
let (b, l) = s.dims2()?;
// Todo: This is a hack. we should be passing in encoded chains.
// let chain_mask = Tensor::ones_like(&x_mask.as_ref().unwrap())?.to_dtype(sample_dtype)?;
// let chain_mask = x_mask.as_ref().unwrap().mul(&chain_mask)?;
let chain_mask = x_mask.as_ref().unwrap().to_dtype(sample_dtype)?;
let (h_v, h_e, e_idx) = self.encode(features)?;
let rand_tensor = Tensor::randn(0f32, 0.25f32, (b, l), device)?.to_dtype(sample_dtype)?;
let decoding_order = (&chain_mask + 0.0001)?
.mul(&rand_tensor.abs()?)?
.arg_sort_last_dim(false)?;
// Todo add bias
// # [B,L,21] - amino acid bias per position
// bias = feature_dict["bias"]
let bias = Tensor::ones((b, l, 21), sample_dtype, device)?;
println!("todo: We need to add the bias!");
let symmetry_residues: Option<Vec<i32>> = None;
match symmetry_residues {
None => {
let e_idx = e_idx.repeat(&[b, 1, 1])?;
let permutation_matrix_reverse = one_hot(decoding_order.clone(), l, 1f32, 0f32)?
.to_dtype(sample_dtype)?
.contiguous()?;
let tril = Tensor::tril2(l, sample_dtype, device)?;
let tril = tril.unsqueeze(0)?;
let temp = tril
.matmul(&permutation_matrix_reverse.transpose(1, 2)?)?
.contiguous()?; //tensor of shape (b, i, q)
let order_mask_backward = temp
.matmul(&permutation_matrix_reverse.transpose(1, 2)?)?
.contiguous()?; // This will give us a tensor of shape (b, q, p)
let mask_attend = order_mask_backward
.gather(&e_idx, 2)?
.unsqueeze(D::Minus1)?;
let mask_1d = x_mask.as_ref().unwrap().reshape((b, l, 1, 1))?;
// Broadcast mask_1d to match mask_attend's shape
let mask_1d = mask_1d
.broadcast_as(mask_attend.shape())?
.to_dtype(sample_dtype)?;
let mask_bw = mask_1d.mul(&mask_attend)?;
let mask_fw = mask_1d.mul(&(Tensor::ones_like(&mask_attend)? - mask_attend)?)?;
// Note: `sample` begins to diverge from the `score` here.
// repeat for decoding
let s_true = s_true.repeat((b, 1))?;
let h_v = h_v.repeat((b, 1, 1))?;
let h_e = h_e.repeat((b, 1, 1, 1))?;
let mask = x_mask.as_ref().unwrap().repeat((b, 1))?.contiguous()?;
let chain_mask = &chain_mask.repeat((b, 1))?;
let bias = bias.repeat((b, 1, 1))?;
let mut all_probs = Tensor::zeros((b, l, 20), sample_dtype, device)?;
// why is this one 21 and the others are 20?
let mut all_log_probs = Tensor::zeros((b, l, 21), sample_dtype, device)?;
let mut h_s = Tensor::zeros_like(&h_v)?;
// note: we this value of 20 is `X`. We will need to replace the values below, not add them
let mut s = Tensor::full(20u32, (b, l), device)?;
let mut h_v_stack = vec![h_v.clone()];
for _ in 0..self.decoder_layers.len() {
let zeros = Tensor::zeros_like(&h_v)?;
h_v_stack.push(zeros);
}
let h_ex_encoder = cat_neighbors_nodes(&Tensor::zeros_like(&h_s)?, &h_e, &e_idx)?;
let h_exv_encoder = cat_neighbors_nodes(&h_v, &h_ex_encoder, &e_idx)?;
let mask_fw = mask_fw
.broadcast_as(h_exv_encoder.shape())?
.to_dtype(h_exv_encoder.dtype())?;
let h_exv_encoder_fw = mask_fw.mul(&h_exv_encoder)?;
for t_ in 0..l {
let t = decoding_order.i((.., t_))?;
let t_gather = t.unsqueeze(1)?; // Shape [B, 1]
// Gather masks and bias
let chain_mask_t = chain_mask.gather(&t_gather, 1)?.squeeze(1)?;
let mask_t = mask.gather(&t_gather, 1)?.squeeze(1)?.contiguous()?;
let bias_t = bias
.gather(&t_gather.unsqueeze(2)?.expand((b, 1, 21))?.contiguous()?, 1)?
.squeeze(1)?;
// Gather edge and node indices/features
let e_idx_t = e_idx
.gather(
&t_gather
.unsqueeze(2)?
.expand((b, 1, e_idx.dim(2)?))?
.contiguous()?,
1,
)?
.contiguous()?;
let h_e_t = h_e.gather(
&t_gather
.unsqueeze(2)?
.unsqueeze(3)?
.expand((b, 1, h_e.dim(2)?, h_e.dim(3)?))?
.contiguous()?,
1,
)?;
let n = e_idx_t.dim(2)?; // number of neighbors
let c = h_s.dim(2)?; // channels/features
let h_e_t = h_e_t
.squeeze(1)? // [B, N, C]
.unsqueeze(1)? // [B, 1, N, C]
.expand((b, l, n, c))? // [B, L, N, C]
.contiguous()?;
let e_idx_t = e_idx_t
.expand((b, l, n))? // [B, L, N]
.contiguous()?;
let h_es_t = cat_neighbors_nodes(&h_s, &h_e_t, &e_idx_t)?;
let h_exv_encoder_t = h_exv_encoder_fw.gather(
&t_gather
.unsqueeze(2)?
.unsqueeze(3)?
.expand((b, 1, h_exv_encoder_fw.dim(2)?, h_exv_encoder_fw.dim(3)?))?
.contiguous()?,
1,
)?;
let mask_bw_t = mask_bw.gather(
&t_gather
.unsqueeze(2)?
.unsqueeze(3)?
.expand((b, 1, mask_bw.dim(2)?, mask_bw.dim(3)?))?
.contiguous()?,
1,
)?;
// Decoder layers loop
for l in 0..self.decoder_layers.len() {
let h_v_stack_l = &h_v_stack[l];
let h_esv_decoder_t = cat_neighbors_nodes(h_v_stack_l, &h_es_t, &e_idx_t)?;
let h_v_t = h_v_stack_l.gather(
&t_gather
.unsqueeze(2)?
.expand((b, 1, h_v_stack_l.dim(2)?))?
.contiguous()?,
1,
)?;
let mask_bw_t = mask_bw_t.expand(h_esv_decoder_t.dims())?.contiguous()?;
let h_exv_encoder_t = h_exv_encoder_t
.expand(h_esv_decoder_t.dims())?
.contiguous()?
.to_dtype(sample_dtype)?;
let h_esv_t = mask_bw_t
.mul(&h_esv_decoder_t.to_dtype(sample_dtype)?)?
.add(&h_exv_encoder_t)?
.to_dtype(sample_dtype)?
.contiguous()?;
let h_v_t = h_v_t
.expand((
h_esv_t.dim(0)?, // batch size
h_esv_t.dim(1)?, // sequence length (93)
h_v_t.dim(2)?, // features (128)
))?
.contiguous()?;
let decoder_output = self.decoder_layers[l].forward(
&h_v_t,
&h_esv_t,
Some(&mask_t),
None,
None,
)?;
let t_expanded = t_gather.reshape(&[b])?; // This will give us a 1D tensor of shape [b]
let decoder_output = decoder_output
.narrow(1, 0, 1)?
.squeeze(1)? // Now [1, 128]
.unsqueeze(1)?; // Now [1, 1, 128] - same rank as target
h_v_stack[l + 1] =
h_v_stack[l + 1].index_add(&t_expanded, &decoder_output, 1)?;
// h_v_stack[l + 1] =
// h_v_stack[l + 1].index_add(&t_expanded, &decoder_output, 1)?;
}
let h_v_t = h_v_stack
.last()
.unwrap()
.gather(
&t_gather
.unsqueeze(2)?
.expand((b, 1, h_v_stack.last().unwrap().dim(2)?))?
.contiguous()?,
1,
)?
.squeeze(1)?;
// Generate logits and probabilities
let logits = self.w_out.forward(&h_v_t)?;
let log_probs = log_softmax(&logits, D::Minus1)?;
// explicit for OoO
let probs = {
let biased_logits = logits.add(&bias_t)?; // (logits + bias_t)
let scaled_logits = (biased_logits / temperature)?; // (logits + bias_t) / temperature
softmax(&scaled_logits, D::Minus1)? // softmax((logits + bias_t) / temperature)
};
let probs_sample = probs
.narrow(1, 0, 20)?
.div(&probs.narrow(1, 0, 20)?.sum_keepdim(1)?.expand((b, 20))?)?;
// Sample new token
let sum = probs_sample.sum(1)?;
let probs_sample_1d = probs_sample
.squeeze(0)? // Remove batch dimension -> [20]
.clamp(1e-10, 1.0)?
.broadcast_div(&sum)?
.contiguous()?;
let s_t = multinomial_sample(&probs_sample_1d, temperature, seed)?;
let s_t = s_t.to_dtype(sample_dtype)?;
let s_true = s_true.to_dtype(sample_dtype)?;
let s_true_t = s_true.gather(&t_gather, 1)?.squeeze(1)?;
let s_t = s_t
.mul(&chain_mask_t)?
.add(&s_true_t.mul(&(&chain_mask_t.neg()? + 1.0)?)?)?
.to_dtype(DType::U32)?;
let s_t_idx = s_t.to_dtype(DType::U32)?;
let s_t_idx = s_t_idx.reshape(&[s_t_idx.dim(0)?])?;
let h_s_update = self.w_s.forward(&s_t_idx)?.unsqueeze(1)?;
let t_gather_expanded = t_gather.reshape(&[b])?;
let h_s_update = h_s_update.squeeze(0)?.unsqueeze(1)?;
h_s =
h_s.index_add(&t_gather_expanded, &Tensor::zeros_like(&h_s_update)?, 1)?;
h_s = h_s.index_add(&t_gather_expanded, &h_s_update, 1)?;
s = {
let dim = 1;
let start = t_gather.squeeze(0)?.squeeze(0)?.to_scalar::<u32>()? as usize;
let s_t_expanded = s_t.unsqueeze(1)?;
s.slice_scatter(&s_t_expanded, dim, start)?
};
let probs_update = chain_mask_t
.unsqueeze(1)?
.unsqueeze(2)?
.expand((b, 1, 20))?
.mul(&probs_sample.unsqueeze(1)?)?;
let t_expanded = t_gather.reshape(&[b])?;
let probs_update = probs_update
.squeeze(1)? // Remove extra dimension
.unsqueeze(1)?;
all_probs =
all_probs.index_add(&t_expanded, &Tensor::zeros_like(&probs_update)?, 1)?;
all_probs = all_probs.index_add(&t_expanded, &probs_update, 1)?;
let log_probs_update = chain_mask_t
.unsqueeze(1)?
.unsqueeze(2)?
.expand((b, 1, 21))?
.mul(&log_probs.unsqueeze(1)?)?
.squeeze(1)?
.unsqueeze(1)?;
all_log_probs = all_log_probs.index_add(
&t_expanded,
&Tensor::zeros_like(&log_probs_update)?,
1,
)?;
all_log_probs = all_log_probs.index_add(&t_expanded, &log_probs_update, 1)?;
}
println!("Before Score");
Ok(ScoreOutput {
s,
log_probs: all_probs,
logits: all_log_probs,
decoding_order,
})
}
Some(symmetry_residues) => {
todo!()
// // note this is a literal translation of the code... Howver I think this could lead to
// // possible unintentional overwriting of value - e.g. if there are multiple identical
// // values in the index. (I guess you might expect that if they are symetrical. Howver the
// // weights do not have to be the same)
// let symmetry_weights = symmetry_weights.as_ref().unwrap();
// // let symmetry_weights_tensor = Tensro::ones(l, candle_core::DType::F32, device)?;
// let mut symmetry_weights_vec = vec![1.0_f64; l];
// for (i1, item_list) in symmetry_residues.iter().enumerate() {
// for (i2, &item) in item_list.iter().enumerate() {
// let value = symmetry_weights[i1][i2];
// symmetry_weights_vec[item as usize] = value;
// }
// }
// let symmetry_weights_tensor = Tensor::from_vec(symmetry_weights_vec, l, device)?;
// // let flattened: Vec<i64> = new_decoding_order.into_iter().flatten().collect();
// let mut new_decoding_order: Vec<Vec<i64>> = Vec::new();
// let decoding_order_vec: Vec<i64> = decoding_order.get(0)?.to_vec1()?;
// for &t_dec in &decoding_order_vec {
// if !new_decoding_order.iter().flatten().any(|&x| x == t_dec) {
// let list_a: Vec<&Vec<i64>> = symmetry_residues
// .iter()
// .filter(|item| item.contains(&t_dec))
// .collect();
// if !list_a.is_empty() {
// new_decoding_order.push(list_a[0].clone());
// } else {
// new_decoding_order.push(vec![t_dec]);
// }
// }
// }
// let flattened_order: Vec<i64> =
// new_decoding_order.clone().into_iter().flatten().collect();
// let decoding_order = Tensor::from_vec(flattened_order, l, device)?
// .unsqueeze(0)?
// .repeat((b, 1))?;
// // shuffle the decoding. Note: This is now non-deterministic
// // let mut rng = thread_rng();
// // let mut new_decoding_order: Vec<i64> = decoding_order_vec.clone();
// // new_decoding_order.shuffle(&mut rng);
// // let decoding_order =
// // Tensor::from_vec(new_decoding_order, l, device)?.repeat((b, 1))?;
// let permutation_matrix_reverse = one_hot(decoding_order, l, 1., 0.)?;
// let tril = Tensor::tril2(l, DType::F64, device)?;
// let temp = tril.matmul(&permutation_matrix_reverse.transpose(1, 2)?)?; // (b, i, q)
// let order_mask_backward =
// temp.matmul(&permutation_matrix_reverse.transpose(1, 2)?)?; // shape (b, q, p)
// let mask_attend = order_mask_backward
// .gather(&e_idx, 2)?
// .unsqueeze(D::Minus1)?;
// let mask_1d = x_mask.unwrap().reshape((b, l, 1, 1))?;
// let mask_bw = mask_1d.mul(&mask_attend)?;
// let mask_fw = mask_1d.mul(&(Tensor::ones_like(&mask_attend)? - mask_attend)?)?;
// // Repeat for decoding
// let s_true = s_true.repeat((b, 1))?;
// let h_v = h_v.repeat((b, 1, 1))?;
// let h_e = h_e.repeat((b, 1, 1, 1))?;
// let e_idx = e_idx.repeat((b, 1, 1))?;
// let mask_fw = mask_fw.repeat((b, 1, 1, 1))?;
// let mask_bw = mask_bw.repeat((b, 1, 1, 1))?;
// let chain_mask = chain_mask.repeat((b, 1))?;
// let mask = x_mask.unwrap().repeat((b, 1))?;
// // Todo: fix bias
// let bias = Tensor::zeros((b, l, 20), DType::F32, device)?;
// let bias = bias.repeat((b, 1, 1))?;
// let all_probs = Tensor::zeros((b, l, 20), candle_core::DType::F32, device)?;
// let all_log_probs = Tensor::zeros((b, l, 21), candle_core::DType::F32, device)?;
// let h_s = Tensor::zeros_like(&h_v)?;
// let s = (Tensor::ones((b, l), candle_core::DType::I64, device)? * 20.)?;
// let mut h_v_stack = vec![h_v.clone()];
// h_v_stack.extend(
// (0..self.decoder_layers.len()).map(|_| Tensor::zeros_like(&h_v).unwrap()),
// );
// let h_ex_encoder = cat_neighbors_nodes(&Tensor::zeros_like(&h_s)?, &h_e, &e_idx)?;
// let h_exv_encoder = cat_neighbors_nodes(&h_v, &h_ex_encoder, &e_idx)?;
// let h_exv_encoder_fw = mask_fw.mul(&h_exv_encoder)?;
// for t_list in new_decoding_order {
// let mut total_logits = Tensor::zeros((b, 21), candle_core::DType::F32, device)?;
// for &t in &t_list {
// // Select the t-th column from chain_mask
// let chain_mask_t = chain_mask.i((.., t as usize))?;
// let mask_t = mask.i((.., t as usize))?;
// let bias_t = bias.i((.., t as usize))?;
// let e_idx_t = e_idx.narrow(1, t as usize, 1)?;
// let h_e_t = h_e.narrow(1, t as usize, 1)?;
// let h_es_t = cat_neighbors_nodes(&h_s, &h_e_t, &e_idx_t)?;
// let h_exv_encoder_t = h_exv_encoder_fw.narrow(1, t as usize, 1)?;
// for (l, layer) in self.decoder_layers.iter().enumerate() {
// let h_esv_decoder_t =
// cat_neighbors_nodes(&h_v_stack[l], &h_es_t, &e_idx_t)?;
// let h_v_t = h_v_stack[l].narrow(1, t as usize, 1)?;
// let h_esv_t = mask_bw
// .narrow(1, t as usize, 1)?
// .mul(&h_esv_decoder_t)?
// .add(&h_exv_encoder_t)?;
// let new_h_v = layer.forward(
// &h_v_t,
// &h_esv_t,
// Some(&mask_t.unsqueeze(1)?),
// None,
// None,
// )?;
// h_v_stack[l + 1].slice_set(&new_h_v, 1, t as usize)?;
// }
// let h_v_t = h_v_stack.last().unwrap().i((.., t as usize))?;
// let logits = self.w_out.forward(&h_v_t)?;
// let log_probs = log_softmax(&logits, D::Minus1)?;
// let updated_probs = chain_mask_t.unsqueeze(1)?.mul(&log_probs)?;
// all_log_probs.slice_set(&updated_probs, 1, t as usize)?;
// let symvec = &symmetry_weights[t as usize];
// let symten = Tensor::new(symvec.as_slice(), device)?;
// total_logits = total_logits.add(&logits.mul(&symten)?)?;
// }
// // todo: bias t not defined here!
// let bias_t = Tensor::zeros_like(&total_logits)?;
// let temperature = 20.;
// let probs = softmax(&(total_logits.add(&bias_t)? / temperature)?, D::Minus1)?;
// let probs_sample = probs
// .narrow(1, 0, 20)?
// .div(&probs.narrow(1, 0, 20)?.sum_keepdim(1)?)?;
// // replce this with sampleing using built in Logit Processing
// // let s_t = probs_sample.multinomial(1, true)?.squeeze(1)?;
// let seed = 32;
// let mut logproc = LogitsProcessor::new(seed, Some(temperature), Some(0.25));
// let logits: Vec<u32> = vec![(); l]
// .iter()
// .map(|_| logproc.sample(&probs_sample))
// .filter_map(Result::ok)
// .collect();
// let s_t = Tensor::from_vec(logits, l, device)?;
// for &t in &t_list {
// let chain_mask_t = chain_mask.i((.., t as usize))?;
// let result = chain_mask_t.unsqueeze(1)?.mul(&probs_sample)?;
// all_probs.slice_set(&result, 1, t as usize)?;
// let s_true_t = s_true.i((.., t as usize))?;
// let s_t = s_t
// .mul(&chain_mask_t)?
// .add(
// &s_true_t
// .mul(&(Tensor::ones_like(&chain_mask_t)? - chain_mask_t)?)?,
// )?
// .to_dtype(candle_core::DType::I64)?;
// let h_s_t = self.w_s.forward(&s_t)?;
// h_s.slice_set(&h_s_t.unsqueeze(1)?, 1, t as usize)?;
// s.slice_set(&s_t.unsqueeze(1)?, 1, t as usize)?;
// }
// }
// Ok(ScoreOutput {
// s,
// // sampling_probs: all_probs,
// log_probs: all_log_probs,
// logits: all_probs,
// decoding_order,
// })
}
}
}
fn single_aa_score() {
todo!()
}
pub fn score(&self, features: &ProteinFeatures, use_sequence: bool) -> Result<ScoreOutput> {
let sample_dtype = DType::F32;
let ProteinFeatures { s, x_mask, .. } = &features;
let s_true = &s.clone();
let device = s_true.device();
let (b, l) = s_true.dims2()?;
let mask = &x_mask.as_ref().clone();
let b_decoder: usize = b;
// Todo: This is a hack. we should be passing in encoded chains.
// Update chain_mask to include missing regions
let chain_mask = Tensor::zeros_like(mask.unwrap())?.to_dtype(sample_dtype)?;
let chain_mask = mask.unwrap().mul(&chain_mask)?;
// encode ...
let (h_v, h_e, e_idx) = self.encode(features)?;
let rand_tensor = Tensor::randn(0f32, 1f32, (b, l), device)?.to_dtype(sample_dtype)?;
// Compute decoding order
let decoding_order = (chain_mask + 0.001)?
.mul(&rand_tensor.abs()?)?
.arg_sort_last_dim(false)?;
let symmetry_residues: Option<Vec<i32>> = None;
let (mask_fw, mask_bw, e_idx, decoding_order) = match symmetry_residues {
Some(symmetry_residues) => {
todo!();
}
None => {
let e_idx = e_idx.repeat(&[b_decoder, 1, 1])?;
let permutation_matrix_reverse = one_hot(decoding_order.clone(), l, 1f32, 0f32)?
.to_dtype(sample_dtype)?
.contiguous()?;
let tril = Tensor::tril2(l, sample_dtype, device)?;
let tril = tril.unsqueeze(0)?;
let temp = tril
.matmul(&permutation_matrix_reverse.transpose(1, 2)?)?
.contiguous()?; // shape (b, i, q)
let order_mask_backward = temp
.matmul(&permutation_matrix_reverse.transpose(1, 2)?)?
.contiguous()?; // shape (b, q, p)
let mask_attend = order_mask_backward
.gather(&e_idx, 2)?
.unsqueeze(D::Minus1)?;
let mask_1d = mask.unwrap().reshape((b, l, 1, 1))?;
// Broadcast mask_1d to match mask_attend's shape
let mask_1d = mask_1d
.broadcast_as(mask_attend.shape())?
.to_dtype(sample_dtype)?;
let mask_bw = mask_1d.mul(&mask_attend)?;
let mask_fw = mask_1d.mul(&(mask_attend - 1.0)?.neg()?)?;
(mask_fw, mask_bw, e_idx, decoding_order)
}
};
let b_decoder = b_decoder;
let s_true = s_true.repeat(&[b_decoder, 1])?;
let h_v = h_v.repeat(&[b_decoder, 1, 1])?;
let h_e = h_e.repeat(&[b_decoder, 1, 1, 1])?;
let mask = x_mask.as_ref().unwrap().repeat(&[b_decoder, 1])?;
let h_s = self.w_s.forward(&s_true)?; // embedding layer
let h_es = cat_neighbors_nodes(&h_s, &h_e, &e_idx)?;
// Build encoder embeddings
let h_ex_encoder = cat_neighbors_nodes(&Tensor::zeros_like(&h_s)?, &h_e, &e_idx)?;
let h_exv_encoder = cat_neighbors_nodes(&h_v, &h_ex_encoder, &e_idx)?;
let h_exv_encoder_fw = mask_fw
.broadcast_as(h_exv_encoder.shape())?
.to_dtype(h_exv_encoder.dtype())?
.mul(&h_exv_encoder)?;
let mut h_v = h_v;
if !use_sequence {
for layer in &self.decoder_layers {
h_v = layer.forward(&h_v, &h_exv_encoder_fw, Some(&mask), None, None)?;
}
} else {
for layer in &self.decoder_layers {
let h_esv = cat_neighbors_nodes(&h_v, &h_es, &e_idx)?;
let h_esv = mask_bw.mul(&h_esv)?.add(&h_exv_encoder_fw)?;
h_v = layer.forward(&h_v, &h_esv, Some(&mask), None, None)?;
}
}
let logits = self.w_out.forward(&h_v)?;
let log_probs = log_softmax(&logits, D::Minus1)?;
Ok(ScoreOutput {
s: s_true,
log_probs,
logits,
decoding_order,
})
}
}